arXiv:2512.24601v1 [cs.Al] 31 Dec 2025

RECURSIVE LANGUAGE MODELS

Alex L. Zhang Tim Kraska Omar Khattab

MIT CSAIL MIT CSAIL MIT CSAIL

altzhang@mit.edu kraska@mit.edu okhattab@mit.edu
ABSTRACT

We study allowing large language models (LLMs) to process arbitrarily long
prompts through the lens of inference-time scaling. We propose Recursive Lan-
guage Models (RLMs), a general inference strategy that treats long prompts as
part of an external environment and allows the LLM to programmatically examine,
decompose, and recursively call itself over snippets of the prompt. We find that
RLMs successfully handle inputs up to two orders of magnitude beyond model
context windows and, even for shorter prompts, dramatically outperform the qual-
ity of base LLMs and common long-context scaffolds across four diverse long-
context tasks, while having comparable (or cheaper) cost per query.

1 INTRODUCTION

GPT-5 RLM(GPT-5)
100 100
S-NIAH S-NIAH
80 80
R 60 60 OOLONG-Pairs
Qo
8
8 40 40 OOLONG
20 OOLONG 20
OOLONG-Pairs
0 - 0
A+ 3+ N N G N & - NS N 3= G N N
S RS o & S & P & ? O S & R N
Input Context Length (log scale) Input Context Length (log scale)

Figure 1: A comparison of GPT-5 and a corresponding RLM on three long-context tasks of increas-
ing complexity: S-NIAH, OOLONG, and OOLONG-Pairs. For each task, we scale the input
length from 213 to 2'8. GPT-5 performance degrades significantly as a function of both input length
and task complexity, while the RLM maintains strong performance. Inputs beyond the red region
do not fit in GPT-5’s context window of 272K tokens, but the RLM handles them effectively. Addi-
tional experiments across other models, methods, and benchmarks are in §|Zl

Despite rapid progress in reasoning and tool use, modern language models still have limited context
lengths and, even within these limits, appear to inevitably exhibit context rot (Hong et al.,[2025)), the
phenomenon illustrated in the left-hand side of Figure [T] where the quality of even frontier models
like GPT-5 degrades quickly as context gets longer. Though we expect context lengths to steadily
rise through improvements to training, architecture, and infrastructure, we are interested in whether
it possible to dramatically scale the context size of general-purpose LLMs by orders of magnitude.
This is increasingly urgent as LLMs begin to be widely adopted for long-horizon tasks, in which
they must routinely process tens if not hundreds of millions of tokens.

We study this question through the lens of scaling inference-time compute. We draw broad inspi-
ration from out-of-core algorithms, in which data-processing systems with a small but fast main
memory can process far larger datasets by cleverly managing how data is fetched into memory.
Inference-time methods for dealing with what are in essence long-context problems are very com-
mon, though typically task-specific. One general and increasingly popular inference-time approach
in this space is context condensation or compaction (Khattab et al. 2021} [Smith| [2025; |OpenAl,
2025; Wu et al.| 2025)), in which the context is repeatedly summarized once it exceeds a length
threshold. Unfortunately, compaction is rarely expressive enough for tasks that require dense access

https://arxiv.org/abs/2512.24601v1

-{ RLM (root / depth=0) }

[Language Model (LM)

—I @ Environment £ = 4
X

Prompt

You are reading an extremely long book. Can you list
out all which items that were made before the Great... RLM (depth=1)
l prompt loaded as variable Prompt

In Chapter 1, find all items
that are listed to belong to

print(prompt[:100]) B
people with...

You are reading an extremely long book. Can you list out all items that *

were made before the Great Catastrophe?\n\n**Chapter 1**\n Bob found Language Model (LM)
solace in walking through the forest. It was a strange time, rife with... ~

out[1]

o
5
part1, part2 = prompt.split(< RLM (depth=1)
f part

m_query(f

ata = llm_query(f Prompt

Look for the items in these
sections that explicitly say

they were found...

Language Model (LM)

print(FINAL_ANSWER)

From chapter 1, Bob was the only character that was noted to be alive
and carrying a flask before the Great Catastrophe. In chapter 3, Alice
uncovers a ring belonging to the fallen King Herod, and later...

Final Resp ‘
From chapter 1, Bob was the only character that was noted to be alive and carrying a
flask before the Great Catastrophe. In chapter 3, Alice uncovers a ring belonging to
the fallen King Herod, and later in chapter 5, Alice finds...

Figure 2: A Recursive Language Model (RLM) treats prompts as part of the environment. It loads
the input prompt as a variable inside a Python REPL environment £ and writes code to peek into,
decompose, and invoke itself recursively over programmatic snippets of the variable.

to many parts of the prompt, as it presumes in effect that some details that appear early in the prompt
can safely be forgotten to make room for new content.

We introduce Recursive Language Models (RLMs), a general-purpose inference paradigm for
dramatically scaling the effective input and output lengths of modern LLMs. The key insight is
that long prompts should not be fed into the neural network (e.g., Transformer) directly but should
instead be treated as part of the environment that the LLM can symbolically interact with.

As Figure [2|illustrates, an RLM exposes the same external interface as an LLM: it accepts a string
prompt of arbitrary structure and produces a string response. Given a prompt P, the RLM initializes
a Read-Eval-Print Loop (REPL) programming environment in which P is set as the value of a
variable. It then offers the LLM general context about the REPL environment (e.g., the length of the
string P), and permits it to write code that peeks into and decomposes P, and to iteratively observe
any side effects from execution. Crucially, RLMs encourage the LLM, in the code it produces, to
programmatically construct sub-tasks on which they can invoke themselves recursively.

By treating the prompt as an object in the external environment, this simple design of RLMs tackles
a foundational limitation in the many prior approaches (Anthropic} {2025} [Sentient, 2025; |Schroeder
et al., 20255 Sun et al., 2025), which focus on recursive decomposition of the tasks but cannot allow
their input to scale beyond the context window of the underlying LLM.

We evaluate RLMs using a frontier closed model (GPT-5;/OpenAl|2025) and a frontier open model
(Qwen3-Coder-480B-A35B;|Team|2025) across four diverse tasks with varying levels of complexity
for deep research (Chen et al., [2025)), information aggregation (Bertsch et al.| [2025), code repository
understanding (Bai et al., 2025), and a synthetic pairwise reasoning task where even frontier models
fail catastrophically. We compare RLMs against direct LLM calls as well as context compaction,
retrieval tool-use agents, and code-generation agents. We find that RLMs demonstrate extremely
strong performance even at the 10M+ token scale, and dramatically outperform all other approaches
at long-context processing, in most cases by double-digit percentage gains while maintaining a com-
parable or lower cost. In particular, as demonstrated in Figure [T exhibit far less severe degradation
for longer contexts and more sophisticated tasks.

2 SCALING LONG CONTEXT TASKS

Recent work (Hsieh et al.l [2024; |Goldman et al., 2025} [Hong et al.l [2025) has successfully argued
that the effective context window of LLMs can often be much shorter than a model’s physical maxi-
mum number of tokens. Going further, we hypothesize that the effective context window of an LLM
cannot be understood independently of the specific task. That is, more “complex” problems will
exhibit degradation at even shorter lengths than simpler ones. Because of this, we must characterize
tasks in terms of how their complexity scales with prompt length.

For example, needle-in-a-haystack (NIAH) problems generally keep ‘needles’ constant as prompt
length is scaled. As a result, while previous generations of models struggled with NIAH tasks,
frontier models can reliably solve these tasks in RULER (Hsieh et al., 2024) even in the 1M+ token
settings. Nonetheless, the same models struggle even at shorter lengths on OOLONG (Bertsch et al.}
2025])), which is a task where the answer depends explicitly on almost every line in the promptm

2.1 TASKS

Grounded in this intuition, we design our empirical evaluation around tasks where we are able to
vary not just the lengths of the prompts, but also consider different scaling patterns for problem
complexity. We loosely characterize each task by information density, i.e. how much information
an agent is required to process to answer the task, and how this scales with different input sizes.

S-NIAH. Following the single needle-in-the-haystack task in RULER (Hsieh et al., 2024), we con-
sider a set of 50 single needle-in-the-haystack tasks that require finding a specific phrase or number
in a large set of unrelated text. These tasks require finding a single answer regardless of input size,
and as a result scale roughly constant in processing costs with respect to input length.

BrowseComp-Plus (1K documents) (Chen et al., 2025). A multi-hop question-answering bench-
mark for DeepResearch (OpenAll [2025) questions that requires reasoning over multiple different
documents. The benchmark provides a verified offline corpus of 100K documents that is guaranteed
to contain gold, evidence, and hard negative documents for each task. Following Sun et al.| (2025)),
we use 150 randomly sampled tasks as our evaluation set; we provide 1000 randomly chosen doc-
uments to the model or agent, in which the gold and evidence documents are guaranteed to exist.
We report the percentage of correct answers. The answer to each task requires piecing together in-
formation from several documents, making these tasks more complicated than S-NIAH despite also
requiring a constant number of documents to answer.

OOLONG (Bertsch et al.,|2025). A long reasoning benchmark that requires examining and trans-
forming chunks of the input semantically, then aggregating these chunks to form a final answer.
We report scoring based on the original paper, which scores numerical answers as score(§) =
0.75/Y=91 and other answers as exact match. We focus specifically on the trec_coarse split,
which is a set of 50 tasks over a dataset of questions with semantic labels. Each task requires using
nearly all entries of the dataset, and therefore scales linearly in processing costs relative to the input
length.

OOLONG-Pairs. We manually modify the t rec_coarse split of OOLONG to include 20 new
queries that specifically require aggregating pairs of chunks to construct the final answer. In Ap-
pendix [E.T] we explicitly provide all queries in this benchmark. We report F1 scores over the answer.
Each task requires using nearly all pairs of entries of the dataset, and therefore scales quadratically
in processing costs relative to the input length.

LongBench-v2 CodeQA (Bai et al.,[2025). A multi-choice code repository understanding split from
LongBench-v2 that is challenging for modern frontier models. We report the score as the percentage
of correct answers. Each task requires reasoning over a fixed number of files in a codebase to find
the right answer.

!This intuition helps explain the patterns seen in Figure earlier: GPT-5 scales effectively on the S-NIAH
task, where the needle size is constant despite longer prompts, but shows faster degradation at increasingly
shorter context lengths on the linear complexity OOLONG and the quadratic complexity OOLONG-Pairs.

2.2 METHODS AND BASELINES

We compare RLMs against other commonly used task-agnostic methods. For each of the follow-
ing methods, we use two contemporary LMs, GPT-5 with medium reasoning (OpenAl [2025) and
default sampling parameters and Qwen3-Coder-480B-A35B (Yang et al.,[2025) using the sampling
parameters described in|Team| (2025)), chosen to provide results for a commercial and open frontier
model respectively. For Qwen3-Coder, we compute costs based on the Fireworks provider (Fire-
works) 2025)). In addition to evaluating the base model on all tasks, we also evaluate the following
methods and baselines:

RLM with REPL. We implement an RLM that loads its context as a string in the memory of a
Python REPL environment. The REPL environment also loads in a module that allows it to query
a sub-LM inside the environment. The system prompt is fixed across all experiments (see Ap-
pendix D). For the GPT-5 experiments, we use GPT-5-mini for the recursive LMs and GPT-5 for the
root LM, as we found this choice to strike a powerful tradeoff between the capabilities of RLMs and
the cost of the recursive calls.

RLM with REPL, no sub-calls. We provide an ablation of our method. In it, the REPL environment
loads in the context, but is not able to use sub-LM calls. In this setting, the LM can still interact with
its context in a REPL environment before providing a final answer.

Summary agent. Following |Sun et al.| (2025)); [Wu et al.[(2025); [Yu et al.| (2025)), we consider an
iterative agent that invokes a summary of the context as it is filled. For example, given a corpus
of documents, it will iteratively view the documents and summarize when full. In cases where the
provided context exceeds the model window, the agent will chunks the input to fit within the model
context window and invoke the same strategy over these chunks. For GPT-5, due to the extremely
high cost of handling large token inputs, we use GPT-5-nano for compaction and GPT-5 to provide
the final answer.

CodeAct (+ BM2S5). We compare directly to a CodeAct (Wang et al., 2024) agent that can execute
code inside of a ReAct (Yao et al., 2023) loop. Unlike an RLM, it does not offload its prompt to
the code environment, and instead provides it directly to the LM. Furthermore, following Jimenez
et al.| (2024); |Chen et al.| (2025), we equip this agent with a BM25 (Robertson & Zaragozal [2009)
retriever that indexes the input context for tasks where this is appropriate.

3 RESULTS AND DISCUSSION

We focus our main experiments in Table |I{on the benchmarks described in Furthermore, we
explore how frontier model and RLM performance degrades as input contexts grow in Figure[I]

Table 1: Performance comparison of different methods across long-context benchmarks of varying
complexity. In gray is the average API cost + the standard deviation of each method on each task. *
indicates runs where the method ran into input context limits.

Model CodeQA BrowseComp+ (1K) OOLONG OOLONG-Pairs
Task Length N (tokens) 23K-4.2M 6M-11M 131K 32K
Qwen3-Coder-480B

Base Model 20.00* 50.13 + $0.08) 0.00% va) + ova 36.00 s0.06 + 50000 0.06 (s0.05 + 50.01)
CodeAct (+ BMZS) 24.00* 5017 + $0.08) 12.66 (50.39 + $0.50) 38.00 151 5109 0.28 (5154 4 5035)
Summary agent 50.00 (s1.26 + $1.50) 38.00 ss0s =212 44.06 s0.15 £5001) 0.31 50.05 £+ 50.00)
RLM 56.00 5092 + $1.23) 44.66 so0s1+5065 48.00 061 + 5049 23,11 5102+ 50.52)
RLM (no sub-calls) 66.00 s0.15 + 5058 46.00 05> +s060) 43.50 032+ 5013 17.34 5177 £ 5123
GPT-5

Base Model 24.00* 50.13 + $0.07) 0.00* va) + ova) 44.00 50.14 = $0.02 0.04 (50.16 + 50.10)
CodeAct (+ BM25) 22.00% 006 +5008) 51.00 s071 +51200 38.00 s0.61 + 5106 24.67 (50.75 + $0.43)
Summary agent 58.00 s1.31 + s1.46) 70.47 05750100 46.00 0.3 + 5001 0.01 (50,13 + 50.09)
RLM 62.00 s0.11 = 50.10) 91.33 5009 51220 56.50 5043 + 5085 58.00 (50.33 - 50.20)
RLM (no sub-calls) 58.00 (s0.18 + 50.56) 88.00 5044 £ 50000 36.00 5037 + 5042) 43.93 (5060 + $1.16)

Observation 1: RLMs can scale to the 10M+ token regime and can outperform base LMs and
existing task-agnostic agent scaffolds on long context tasks. Across all tasks, RLMs demonstrate
strong performance on input tasks well beyond the effective context window of a frontier LM, out-
performing base models and common long-context scaffolds by up to 2x the performance while
maintaining comparable or cheaper average token costs. Notably, RLMs scale well to the theoret-
ical costs of extending a base model’s context window — on BrowseComp-Plus (1K), the cost of
GPT-5-mini ingesting 6-11M input tokens is $1.50 — $2.75, while RLM(GPT-5) has an average cost
of $0.99 and outperforms both the summarization and retrieval baselines by over 29%.

Furthermore, on tasks where processing costs scale with the input context, RLMs make significant
improvements over the base model on tasks that fit well within the model’s context window. On
OOLONG, the RLM with GPT-5 and Qwen3-Coder outperform the base model by 28.4% and 33.3%
respectively. On OOLONG-Pairs, both GPT-5 and Qwen3-Coder make little progress with F1 scores
of <0.1%, while the RLM using these models achieve F1 scores of 58.00% and 23.11% respectively,
highlighting the emergent capability of RLMs to handle extremely information-dense tasks.

Observation 2: The REPL environment is necessary for handling long inputs, while the re-
cursive sub-calling of RLMs provides strong benefits on information-dense inputs. A key char-
acteristic of RLMs is offloading the context as a variable in an environment £ that the model can
interact with. Even without sub-calling capabilities, our ablation of the RLM is able to scale beyond
the context limit of the model, and outperform the base model and other task-agnostic baselines
on most long context settings. On the CodeQA and BrowseComp+ tasks with Qwen3-Coder, this
ablation is able to outperform the RLM by 17.9% and 3% respectively.

On information-dense tasks like OOLONG or OOLONG-Pairs, we observed several cases where
recursive LM sub-calling is necessary. In §3.1] we see RLM(Qwen3-Coder) perform the necessary
semantic transformation line-by-line through recursive sub-calls, while the ablation without sub-
calls is forced to use keyword heuristics to solve these tasks. Across all information-dense tasks,
RLMs outperform the ablation without sub-calling by 10%-59%.

GPT-5 Qwen3-Coder-480B
4 4
B Base Model (GPT-5) [Base Model (Qwen3-Coder-480B)
I RLM(GPT-5) with REPL [RLM(Qwen3-Coder-480B) with REPL
31 B2 RLM(GPT-5) with REPL (no sub-calls) 31 B2 RLM(Qwen3-Coder-480B) with REPL (no sub-calls)
— B Summary Agent (GPT-5) — B Summary Agent (Qwen3-Coder-480B)
A [0 CodeAct (GPT-5) + BM25 i [0 CodeAct (Qwen3-Coder-480B) + BM25
72 72
3 3
o o
1 1
0
25th 50th 75th 95th 25th 50th 75th 95th
Percentile Percentile

Figure 3: Cost of RLM and baselines described in plotted at the 25th, 50th, 75th, and 95th
percentile of total API cost. We observe comparable or even lower costs for RLMs at the 50th
percentile, but sharp increases at the tail end due to potentially long RLM trajectories.

Observation 3: LM performance degrades as a function of input length and problem complex-
ity, while RLM performance scales better. The benchmarks S-NIAH, OOLONG, and OOLONG-
Pairs contain a fixed number of tasks over a context with lengths ranging from 2'3 to 2'8. Further-
more, each benchmark can be loosely categorized by different processing costs of the input context
with respect to length (roughly constant, linear, and quadratic respectively). In Figure[I] we directly
compare an RLM using GPT-5 to base GPT-5 on each task — we find that GPT-5 performance de-
grades significantly faster for more complex tasks, while RLM performance degrades but at a much
slower rate, which aligns with the findings of |Goldman et al.| (2025)). For context lengths beyond
214 the RLM consistently outperforms GPT-5.

Furthermore, RLM costs scale proportionally to the the complexity of the task, while still remaining
in the same order of magnitude of cost as GPT-5 (see Figure [9]in Appendix [C). In §3.1} we explore
what choices the RLM makes in these settings that causes these differences in cost. Lastly, in this
setting, we also observe that the base LM outperforms RLM in the small input context regime. By
construction, an RLM has strictly more representation capacity than an LM: the choice of an envi-
ronment that calls the root LM is equivalent to the base LM; in practice, however, we observe that

RLM performance is slightly worse on smaller input lengths, suggesting a tradeoff point between
when to use a base LM and when to use an RLM.

Observation 4: The inference cost of RLMs remain comparable to a base model call but are
high variance due to differences in trajectory lengths. RLMs iteratively interact with their context
until they find a suitable answer, leading to large differences in iteration length depending on task
complexity. In Figure[3] we plot the quartile costs for each method across all experiments in Table/T]
excluding BrowseComp-Plus (1K), as the base models cannot fit any of these tasks in context. For
GPT-5, the median RLM run is cheaper than the median base model run, but many outlier RLM runs
are significantly more expensive than any base model query. However, compared to the summariza-
tion baseline which ingests the entire input context, RLMs are up to 3 x cheaper while maintaining
stronger performance across all tasks because the model is able to selectively view context.

We additionally report runtime numbers of each method in Figures[5] [6]in Appendix [C] but we note
several important caveats. Unlike API costs, these numbers are heavily dependent on implementa-
tion details such as the machine used, API request latency, and the asynchrony of LM calls. In our
implementation of the baselines and RLMs, all LM calls are blocking / sequential. Nevertheless,
similar to costs, we observe a wide range of runtimes, especially for RLMs.

Observation 5: RLMs are a model-agnostic inference strategy, but different models exhibit
different overall decisions on context management and sub-calling. While GPT-5 and Qwen3-
Coder-480B both exhibit strong performance as RLMs relative to their base model and other base-
lines, they also exhibit different performance and behavior across all tasks. On BrowseComp-Plus in
particular, RLM(GPT-5) nearly solves all tasks while RLM(Qwen3-Coder) struggles to solve half.

We note that the RLM system prompt is fixed for each model across all experiments and is not
tuned for any particular benchmark. Between GPT-5 and Qwen3-Coder, the only difference in the
prompt is an extra line in the RLM(Qwen3-Coder) prompt warning against using too many sub-
calls (see Appendix [D). We provide an explicit example of this difference in example where
RLM(Qwen3-Coder) performs the semantic transformation in OOLONG as a separate sub-LM call
per line while GPT-5 is conservative about sub-querying LMs.

3.1 EMERGENT PATTERNS IN RLM TRAJECTORIES

Even without explicit training, RLMs exhibit interesting context management and problem decom-
position behavior. We select several examples of snippets from RLM trajectories to understand how
they solve long context problems and where they can improve. We discuss particular examples of
interesting behavior here, with additional examples in Appendix

Filtering input information using code execution based on model priors. A key intuition for why
the RLM abstraction can maintain strong performance on huge inputs without exploding costs is the
LM’s ability to filter input context without explicitly seeing it. Furthermore, model priors enable the
RLM to narrow the search space and process fewer input tokens. As an example, in Figure fp, we
observed RLM(GPT-5) using regex queries search for chunks containing keywords in the original
prompt (e.g. “festival”’) and phrases it has a prior about (e.g. “La Union”). Across most trajectories,
a common strategy we observed was probing the context by printing a few lines back to the root
LM, then filtering based on its observations.

Chunking and recursively sub-calling LMs. RLMs defer essentially unbounded-length reason-
ing chains to sub-(R)LM calls. The choice of decomposition can greatly affect task performance,
especially for information-dense problems. In our experiments, we did not observe complicated
partitioning strategies beyond uniform chunking or keyword searches. In Figure @b, RLM(Qwen3-
Coder) chunks by newline in a 1000+ line context from OOLONG.

Answer verification through sub-LM calls with small contexts. We observed several instances
of answer verification made by RLMs through sub-LM calls. Some of these strategies implicitly
avoid context rot by using sub-LMs to perform verification (see example [B.T]), while others solely
use code execution to programmatically verify answers are correct. In some instances, however, the
answer verification is redundant and significantly increases the cost per task — in example [B.3] we
observed a trajectory on OOLONG where the model tries to reproduce its correct answer more than
five times before choosing the incorrect answer in the end.

“\ Code Executions (1)
Execution 1
Execution Time: 01585
1
eyword, window=200, max_hits=10):

umerate(context):

ower(). find(keyword.lower(), start)

ix - window)
idx + lenCkeyword) + window)

i, chunk[s:e1)) (b) RLMs defer reasoning over its large
SRR DL context by querying recursive LM calls.

start = idx + 1
return hits

keywords = ["di "pinak
results = {}
for kw in keywords

results[kw] = find_snippetsCkw, window=400, max_hits=5) Execution Time: 0.002s

Execution 5

for kw, hits in results.items()
[¢ aite th na’ ormatted r 1t

formatted_pairs = [f"({pair[0]}, {pair[1]})" for pair in pairs]

final_result = "\n".join(formatted_pairs)

ip
t(f"[Chunk {i}] ...{snip}...\n")
print(f"Total in final result: {len(formatted_pairs)}")

print("First 5 :
print("\n".join(formatted_pairs[:51))

=== Keyword: dinengdeng ==
(Chunk 6] ...-—

title: Dinengdeng Festival, a symbolism of culture of Ilocano people FINAL_VAR(final_result)
date: 2017-05-14

AGO0, LA UNION - Everyone will surely agree that fiestas in the Philippines bring smile to the fad

On April 30, the local government unit of Agoo formally opened its weeklong fiesta dubbed Dinen.. Total pairs in final result: 10731
First 5 pairs:
(12258, 12646)

(a) RLMs can interact with, probe, and filter the
context using code (e.g. regex queries), based on (c) RLMs can stitch recursive LM outputs to
model priors and reasoning. form longer, composite outputs.

Figure 4: RLMs have common patterns in their trajectories when solving tasks. (a) We frequently
observed RLMs filtering and interacting with their context through code like regex queries. (b)
We found that RLMs can effectively decompose their context through recursive sub-calls (¢) On
long-output tasks, RLMs are able to solve sub-problems using recursive sub-LM calls and stitch
their outputs to form a final output.

Passing recursive LM outputs through variables for long output tasks. RLMs are able to pro-
duce essentially unbounded tokens well beyond the limit of the base LM by returning variables in
the REPL as output. Through the REPL, the RLM can iteratively construct these variables as a
mixture of programmatic and sub-(R)LM output calls. We observed this strategy used heavily in
OOLONG-Pairs trajectories, where the RLM stored the output of sub-LM calls over the input in
variables and stitched them together to form a final answer (see Figure [Af).

4 RELATED WORKS

Long Context LM Systems. There have primarily been two orthogonal directions for long context
management in language model systems: 1) directly changing the architecture of and retraining the
base LM to handle longer contexts (Press et all, 2022} [Gu et al} 2022; [Munkhdalai et al.| [2024),
and 2) building a scaffold around the LM that implicitly handles the context — RLMs focus on the
latter. One popular class of such strategies is lossy context management, which uses summarization
or truncation to compress the input context at the cost of potentially losing fine-grained information.
For example, MemWalker constructs a tree-like data structure of the input that the
LM can navigate when answering long context questions. ReSum is another work
that adds a summarization tool to periodically compress the context of a multi-turn agent. Another
class of strategies implement an explicit memory hierarchy in the agent scaffold (Packer et al.,[2024}

Chhikara et al, 2025} [Zhang et al, 2025). RLMs are different from prior work in that all context
window management is implicitly handled by the LM itself.

Task Decomposition through sub-LM calls. Many LM-based agents (Guo et al., 2024} [Anthropic}
use multiple, well-placed LM calls to solve a problem, however many of these calls are
placed based on human-engineered workflows. Several methods like ViperGPT (2023),
THREAD (Schroeder et al,[2025), DisCIPL (Grand et al. [2025]), ReDel (2024), Context

Folding (Sun et al., [2025)), and AgentFold (Ye et al.| [2025) have explored deferring the choice of
sub-LM calls to the LM. These techniques emphasize task decomposition through recursive LM
calls, but are unable to handle long context inputs beyond the length of the base LM. RLMs, on
the other hand, are enabled by an extremely simple intuition (i.e., placing the prompt as part of the
external environment) to symbolically manipulate arbitrarily long strings and to iteratively refine
their recursion via execution feedback from the persistent REPL environment.

5 LIMITATIONS AND FUTURE WORK

While RLMs show strong performance on tasks beyond the context window limitations of existing
LMs at reasonable inference costs, the optimal mechanism for implementing RLMs remains under-
explored. We focused on synchronous sub-calls inside of a Python REPL environment, but we note
that alternative strategies involving asynchronous sub-calls and sandboxed REPLs can potentially
significantly reduce the runtime and inference cost of RLMs. Furthermore, we chose to use a max
recursion depth of one (i.e. sub-calls are LMs); while we found strong performance on existing
long-context benchmarks, we believe that future work should investigate deeper layers of recursion.

Lastly, we focused our experiments on evaluating RLMs using existing frontier models. Explicitly
training models to be used as RLMs (e.g. as root or sub-LMs) could provide additional perfor-
mance improvements — as we found in current models are inefficient decision makers over
their context. We hypothesize that RLM trajectories can be viewed as a form of reasoning (Ope-
nAl et al.,[2024; |DeepSeek-Al et al.,[2025), which can be trained by bootstrapping existing frontier
models (Zelikman et al.| 2022 2024).

6 CONCLUSION

We introduced Recursive Language Models (RLMs), a general inference framework for language
models that offloads the input context and enables language models to recursively sub-query lan-
guage models before providing an output. We explored an instantiation of this framework that
offloads the context into a Python REPL environment as a variable in memory, enabling the LM
to reason over its context in code and recursive LM calls, rather than purely in token space. Our
results across multiple settings and models demonstrated that RLMs are an effective task-agnostic
paradigm for both long-context problems and general reasoning. We are excited to see future work
that explicitly trains models to reason as RLMs, which could result in another axis of scale for the
next generation of language model systems.

ACKNOWLEDGMENTS

This research is partially supported by the Laude Institute. We thank Noah Ziems, Jacob Li, James
Moore, and the MIT OASYS and MIT DSG labs for insightful discussions throughout this project.
We also thank Matej Sirovatka, Ofir Press, Sebastian Miiller, Simon Guo, and Zed Li for helpful
feedback.

REFERENCES

Anthropic. Claude code: Subagents — modular ai workflows with isolated agent contexts, 2025.
URL https://docs.anthropic.com/en/docs/claude-code/sub-agents.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
and reasoning on realistic long-context multitasks, 2025. URL https://arxiv.org/abs/
2412.15204.

Amanda Bertsch, Adithya Pratapa, Teruko Mitamura, Graham Neubig, and Matthew R. Gormley.
Oolong: Evaluating long context reasoning and aggregation capabilities, 2025. URL https:
//arxiv.org/abs/2511.02817.

https://docs.anthropic.com/en/docs/claude-code/sub-agents
https://arxiv.org/abs/2412.15204
https://arxiv.org/abs/2412.15204
https://arxiv.org/abs/2511.02817
https://arxiv.org/abs/2511.02817

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the mem-
ory maze: Beyond context limit through interactive reading, 2023. URL https://arxiv.
org/abs/2310.050209.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifymoghaddam, Yanxi Li, Haoran Hong,
Xinyu Shi, Xuye Liu, Nandan Thakur, Crystina Zhang, Luyu Gao, Wenhu Chen, and Jimmy Lin.
Browsecomp-plus: A more fair and transparent evaluation benchmark of deep-research agent,
2025. URL https://arxiv.org/abs/2508.06600.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.
org/abs/2504.19413.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Fireworks. Qwen3 coder 480b a35b instruct. https://fireworks.ai/models/
fireworks/gwen3-coder-480b—-a35b-instruct) 2025.

Omer Goldman, Alon Jacovi, Aviv Slobodkin, Aviya Maimon, Ido Dagan, and Reut Tsarfaty. Is it
really long context if all you need is retrieval? towards genuinely difficult long context nlp, 2025.
URL https://arxiv.org/abs/2407.00402.

Gabriel Grand, Joshua B Tenenbaum, Vikash K Mansinghka, Alexander K Lew, and Jacob Andreas.
Self-steering language models. arXiv preprint arXiv:2504.07081, 2025.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges, 2024. URL https://arxiv.org/abs/2402.01680.

https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2508.06600
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2501.12948
https://fireworks.ai/models/fireworks/qwen3-coder-480b-a35b-instruct
https://fireworks.ai/models/fireworks/qwen3-coder-480b-a35b-instruct
https://arxiv.org/abs/2407.00402
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2402.01680

Kelly Hong, Anton Troynikov, and Jeff Huber. Context rot: How context degradation affects llm
performance, 2025. URL https://research.trychroma.com/context—-rot.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Omar Khattab, Christopher Potts, and Matei Zaharia. Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. Advances in Neural Information Processing Systems, 34:27670-27682,
2021.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404.07143.

OpenAl Deep research, 2025. URL https://openai.com/index/
introducing-deep-research/. Al-powered research assistant tool.

OpenAl. Gpt-5 system card. Online; August 7, 2025, 2025. URL https://openai.com/
blog/gpt-5-system—-card/.

OpenAl. Codex cli: A lightweight coding agent for your terminal, 2025. URL https:
//developers.openai.com/codex/cli/\

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan

10

https://research.trychroma.com/context-rot
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/blog/gpt-5-system-card/
https://openai.com/blog/gpt-5-system-card/
https://developers.openai.com/codex/cli/
https://developers.openai.com/codex/cli/

Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https://arxiv.org/
abs/2310.08560!.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022. URL https://arxiv.org/abs/2108.12409.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018. URL https:
//arxiv.orqg/abs/1804.02767.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3(4):333-389, April 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
URL https://doi.org/10.1561/1500000019.

Philip Schroeder, Nathaniel Morgan, Hongyin Luo, and James Glass. Thread: Thinking deeper with
recursive spawning, 2025. URL https://arxiv.org/abs/2405.17402,

Sentient. Roma: The backbone for open-source meta-agents, November 2025. URL |https:
//blog.sentient.xyz/posts/recursive—-open—-meta—agent, Accessed: 2025-
12-20.

Calvin Smith. Openhands context condensensation for more effi-
cient ai agents, 2025. URL https://openhands.dev/blog/
openhands—-context—-condensensation-for-more-efficient-ai-agents.

Weiwei Sun, Miao Lu, Zhan Ling, Kang Liu, Xuesong Yao, Yiming Yang, and Jiecao Chen. Scaling
long-horizon llm agent via context-folding, 2025. URL https://arxiv.org/abs/2510.
11967

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution

for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
11888-11898, 2023.

Qwen Team. Qwen3-coder-480b-a35b-instruct. https://huggingface.co/Qwen/
Owen3—-Coder-480B-A35B-Instruct, 2025.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better 1lm agents, 2024. URL https://arxiv.org/abs/2402.
01030.

Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Xinmiao
Yu, Dingchu Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong
Cheng, and Jingren Zhou. Resum: Unlocking long-horizon search intelligence via context sum-
marization, 2025. URL https://arxiv.org/abs/2509.13313.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger

11

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1561/1500000019
https://arxiv.org/abs/2405.17402
https://blog.sentient.xyz/posts/recursive-open-meta-agent
https://blog.sentient.xyz/posts/recursive-open-meta-agent
https://openhands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents
https://openhands.dev/blog/openhands-context-condensensation-for-more-efficient-ai-agents
https://arxiv.org/abs/2510.11967
https://arxiv.org/abs/2510.11967
https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2509.13313

Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Rui Ye, Zhongwang Zhang andsen Kuan Li, Huifeng Yin, Zhengwei Tao, Yida Zhao, Liangcai Su,
Liwen Zhang, Zile Qiao, Xinyu Wang, Pengjun Xie, Fei Huang, Siheng Chen, Jingren Zhou, and
Yong Jiang. Agentfold: Long-horizon web agents with proactive context management, 2025.
URLhttps://arxiv.org/abs/2510.246909.

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, and Hao Zhou. Memagent: Reshaping long-context
Ilm with multi-conv rl-based memory agent, 2025. URL https://arxiv.org/abs/2507.
02259.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465|

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.096209.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
Tracing hierarchical memory for multi-agent systems, 2025. URL https://arxiv.org/
abs/2506.07398.

Andrew Zhu, Liam Dugan, and Chris Callison-Burch. Redel: A toolkit for llm-powered recursive
multi-agent systems. arXiv preprint arXiv:2408.02248, 2024.

12

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2510.24699
https://arxiv.org/abs/2507.02259
https://arxiv.org/abs/2507.02259
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2506.07398

A NEGATIVE RESULTS: THINGS WE TRIED THAT DID NOT WORK.

Drawing inspiration from |Redmon & Farhadi| (2018)), we try to be descriptive about what tricks,
quirks, and other relevant things failed and succeeded in a concise manner. Some observations are
based on longer supplementary experiments, while others are based on small samples of results.

Using the exact same RLM system prompt across all models can be problematic. We originally
wrote the RLM system prompt with in context examples for GPT-5, and tried to use the same system
prompt for Qwen3-Coder, but found that it led to different, undesirable behavior in the trajectory.
We had to add a small sentence to the RLM system prompt for Qwen3-Coder to prevent it from
using too many recursive sub-calls.

Models without sufficient coding capabilities struggle as RLMs. Our instantiation of RLMs relies
on the ability to reason through and deal with the context in a REPL environment. We found from
small scale experiments that smaller models like Qwen3-8B (Yang et al., 2025) struggled without
sufficient coding abilities.

Thinking models without sufficient output tokens struggle as RLMs. In addi-
tion to Qwen3-Coder—-480B-A35B-Instruct, we also tried experimenting with
Qwen3-235B-A22B as the RLM. While we found positive results across the board from
the base model (e.g. on OOLONG (Bertsch et al., 2025), performance jumped from 30% to 38%),
the smaller gap compared to the evaluated models in the main experiments (Table [I)) are due to
multiple trajectories running out of output tokens while producing outputs due to thinking tokens
exceeding the maximum output token length of an individual LM call.

RLMs without asynchronous LM calls are slow. We implemented all sub-LM queries naively as
blocking / sequential calls, which caused our RLM experiments to be slow, especially compared to
just the base model. We are confident that this can be resolved with a robust implementation.

Depending on the model, distinguishing between a final answer and a thought is brittle for
RLMs. The current strategy for distinguishing between a “next turn” and a final answer for the
RLM is to have it wrap its answer in FINAL() or FINAL_VAR() tags. Similar to intuition about
structured outputs degrading performance, we also found the model to make strange decisions (e.g.
it outputs its plan as a final answer). We added minor safeguards, but we also believe this issue
should be avoided altogether in the future when models are trained as RLMs.

B ADDITIONAL RLM TRAJECTORIES

In this section, we provide several example trajectories to highlight characteristics of frontier models
as RLMs. Many of the trajectories are too long to fit in text (we also provide the raw trajectories and
a visualizer in our codebase), so we describe each step and show specific examples when relevant.

A few noticeable properties of these trajectories are that RLMs often make non-optimal choices
despite their strong results in §2] For example, in Example we observed that the RLM with
Qwen3-Coder carefully constructs its final answer through a mix of recursive sub-calls and code
execution in the first iteration, but then discards this information and continues wasting sub-calls
before not using these stored answers. We also observed distinct differences in model behavior such
as in Example [B.3] where we found Qwen3-Coder make hundreds to thousands of recursive sub-
calls for a single simple task, while GPT-5 makes on the order of ten. While these examples are not
comprehensive, they provide useful qualitative insight into how to improve RLMs.

B.1 RLM(GPT-5) oN BROWSECOMP-PLUS-QUERY_74

The total cost of this trajectory was $0.079. In this task, the agent must find the answer to the
following multi-hop query given a corpus of 1000 unique documents (8.3M total tokens) that contain
evidence documents and negatives:

This vegetable stew uses fish, but adding meat is possible. It also uses a salty and intense condiment,
which is the critical ingredient of the dish. As of 2023, a township holds a celebration named
after this stew. Between 1995 and 2005 inclusive, this festivity began after authorities shifted
the highlight and subject of their event to set them apart from other areas in the region that use
the same product in their celebrations. This town holds the event every year after February but
before September. During its thirteenth anniversary, it conducted a competition that showcased town

13

and provincial festivities in the region, where all three winners came from the same province. A
beauty pageant was also a part of the celebration. What are the first and last names of the person
who won that contest that year?

Step 1. GPT-5 (as the root LM) first decides to probe at the 1000 document list with regex queries.
It has some priors about these events (as shown from its particular choice of words it looks for), but
it also looks for specific keywords in the prompt like “beauty pagent” and “festival”.

*\, Code Executions (1)

Execution 1

Execution Time: 0.158s

xt for clues

def find_snippets(keyword, window=200, max_hits=10):
hits = []
for i, chunk in enumerate(context):
start = 0
while True:
idx = chunk.lower().find(keyword.lower(), start)
if idx = -1:
break
s = max(@, idx - window)
e = min(len(chunk), idx + len(Ckeyword) + window)
hits.append((i, chunk[s:e]))
if len(Chits) >= max_hits:
return hits
start = idx + 1
return hits

keywords = ["dinengdeng", "pinakbet", "bagoong", "Agoo", "La Union", "festival", "beauty pageant", "Miss", "Dinengdeng Festival"]
results = {}
for kw in keywords:

results[kw] = find_snippets(kw, window=400, max_hits=5)

for kw, hits in results.items()
print(f"=== Keyword: {kw
if not hits:
print("No hits")
for i, snip in hits:
print(f"[Chunk {i}] ...{snip}...\n")

Step 2. After running its regex queries, the root LM finds an interesting snippet on the chunk at
index 6, so it launches a recursive LM call over this snippet to look for information relevant to the
original query. The RLM is able to both store this information in a variable answer6, as well as
print this information out for the root LM to see. The sub-LM call finds the answer is likely ‘Maria
Dalmacio® and stores this information back in the root LM’s environment.

) Recursive LLM call (1)

Recursive LLM Call 1

Cost: $0.001682 Tokens: 1,605 Model: gpt-5-mini Call ID: c981cff9...

Query:

Extract the following from this article:

- What festival and town is this about?

- In what year was this specific celebration held?

- Was it the 13th anniversary? If not explicit, infer from phrasing.
- Details of the 'Festival of Festivals' competition winners.

- The beautv paceant held and the winner's full name.

Response:

- Festival and town: Dinengdeng Festival in Agoo, La Union.

- Year of this celebration: 2017.

- 13th anniversary? The article says "For 13 years now," so while it doesn't explicitly say "13th anniversary," it implies the festival had been held for 13
years (i.e., the 2017 edition was the 13th year).

- Festival of Festivals winners: Champion - Pugo's Tinungbo Festival; 2nd place - Naguilian's Basi Festival; 3rd place - Balaoan's Panagyaman Festival (all
from La Union).

14

“\ Code Executions (1)

Execution 1

Execution Time: 9.089s

chunk6
answer6 = 1lm_query(f"Extract the following from this article:
- What festival and town is this about?\n
- In what year was this specific celebration held?\n"

- Was it the 13th anniversary? If not explicit, infer from phrasing.\n"
- Details of the 'Festival of Festivals' competition winners.\n"
- The beauty pageant held and the winner's full name.\n\n"
f"Article:\n{chunk6}")
print(answer6)

- Festival and town: Dinengdeng Festival in Agoo, La Union

- Year of this celebration: 2017.

- 13th anniversary? The article says “For 13 years now," so while it doesn't explicitly say "13th anniversary,” it implies the festival had been held for 13 years
- Festival of Festivals winners: Champion — Pugo's Tinungbo Festival; 2nd place — Naguilian's Basi Festival; 3rd place — Balaoan's Panagyaman Festival (all from La
- Beauty pageant and winner: Miss Agoo 2017 — Maria Camille Dalmacio

Step 3. After checking the information above, the root LM reasons that it has enough information to
answer the query. The root LM chooses to check its answer again with two additional recursive LM
calls to confirm that its answer aligns with this check. Finally, the root LM returns its final answer
as ‘Maria Dalmacio‘, which is the correct answer.

“\\ Code Executions (1)

Execution 1

Execution Time: 6.279s

chunk6 = context[6]
confi 11im_queryC
"From the article, answer concisely:
What year was the celebration?
Does the text indicate it's the 13th year (e.g., 'For 13 years now')?\n"
What beauty pageant was held and who won (full name)?\n"
Return only: YEAR | 13TH:YES/NO | PAGEANT | WINNER_FULL_NAME"
"\n\nArticle:\n" + chunké

print(confirm)

ner's (any middle
11lm_query
f"Given this line: {confirm}\n"
f"Extract only the beauty pageant winner's first and last names (omit any middle names)."
D)

print(winner_first_last)

2017 | 13TH:YES | Miss Agoo 2017 | Maria Camille Dalmacio
Maria Dalmacio

B.2 RLM(QWEN3-CODER) ON OOLONG-PAIRS-QUERY_3

The total cost of this trajectory was $1.12. In this task, the agent must output all pairs of user IDs
satisfying some set of properties given a list of entries (32k tokens total). This is both an information
dense long input as well as long output task, making it particularly challenging for current LMs.

Answer the following: In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID
first) where both users have at least one instance with a description and abstract concept or
abbreviation. Each of the questions can be labelled as one of the labels (the data does not provide

the labels, you need to figure out the label from the semantics of the question): description and
abstract concept, entity, human being, numeric value, location, abbreviation. In your answer, list
all pairs in the format (user_id_ 1, user_id_2), separated by newlines. Your answer must be sorted
by first user ID. For example, if the answer is the Instance ID pairs (22740, 35839) and (35839,
52032), you should return *(22740, 35839), (35839, 52032) ‘. If there is no answer, return an empty
list [].

Step 1. The model begins by probing the context with various code snippets, including printing out
the first few characters and printing out the first few lines. We noticed in particular that Qwen3-
Coder-480B-A35B tends to output multiple code blocks in a single step unlike GPT-5, which makes
outputs in a more iterative fashion.

15

Execution 1

Execution Time: 0.000s

Le t min: or t to un s
print(f"Context lengtl {len(context)} characters")

print("First 500 characters of context:")
print(context[:500])

Context length: 76803 characters

First 500 characters of context:

The following lines contain 787 general-knowledge questions, one per line. Each question has an answer that can be described as one of 6 categories: 'location’, 'nu
You will be asked to answer questions about the aggregate label statistics across all 787 examples in this dataset. Do not try to guess, estimate, or approximate th

Date: Jun 29, 2022

The model continues probing by splitting the input context by newline characters and checking
roughly what the data format looks like.

Execution 3

Execution Time: 0.000s
s proc
import re

Split the context into lines
lines = context.strip().split('\n")

print(f'Total lines: {len(lines)}")

Let's 1o e first Li
for i in range(min(1@, len(lines)))
print(lines[i])

Total lines: 794

The following lines contain 787 general-knowledge questions, one per line. Each question has an answer that can be described as one of 6 categories: 'location', '

nu
You will be asked to answer questions about the aggregate label statistics across all 787 examples in this dataset. Do not try to guess, estimate, or approximate th
Date: Jun 29, 2022 User: 44436 Instance: What does IOC stand for ?

Il I
Date: Apr @8, 2022 || User: 31080 || Instance: What do the letters D.C. stand for in Washington , D.C. ?
Date: May 16, 2022 || User: 52632 || Instance: What is the current unemployment rate in the U.S. ?
I Il
Il Il
I I

Date: Jan 20, 2025 || User: 89840 || Instance: What two New York Yankee pitchers swapped wives and families ?
Date: Feb 12, 2024 User: 33449 Instance: How do you recognize anorexia ?
Date: May 16, 2024 || User: 95871 || Instance: Name the child left on a doorstep at the beginning of Gasoline Alley .

From the given format, the model chooses to first semantically classify the data using sub-LM calls
over smaller chunks of the input (to avoid context rot and mistakes in larger contexts) and provides
a sample back to the root LM of what it observed during this process.

16

Execution 4

Execution Time: 75.880s

a in ba

def classify_questions_batch(questions_with_ids):

prompt = """You are given a list of questions with their User IDs. Each question needs to be classified into exactly one of these 6 ca

"numeric value' - questions asking for a number, count, date, measurement, etc.

'entity' - questions about specific things, objects, organizations, works of art, etc.

"location' - questions about places, countries, cities, geographic locations

'description and abstract concept' - questions about meanings, definitions, explanations, concepts, theories, ideas

'abbreviation' - questions asking what an acronym or abbreviation stands for

"human being' - questions about specific people, their roles, relationships, etc.

For each question, provide the classification in the format "User ID: classification" (just the category name).

Questions:
""" 4 "\n".join(questions_with_ids)

return 1lm_query(prompt)

Process in b es of 100 to d too many LLM calls
batch_size = 100
classifications = []

for i in range(@, len(lines), batch_size):
batch = lines[i:i+batch_size]
batch_classifications = classify_questions_batch(batch)
classifications.append(batch_classifications)
print(f"Processed batch {i//batch_size + 1}/{(len(lines)-1)//batch_size + 1}")

mbine all if
all_classifications = "\n".join(classifications)
print("Sample of classifications:")
print("\n".joinCall_classifications.split('\n")[:20]))

Processed batch 1/8
Processed batch 2/8

Processed batch 3/8

Processed batch 4/8

Processed batch 5/8

Processed batch 6/8

Processed batch 7/8

Processed batch 8/8

sample of classifications:

44436: abbreviation

31080: abbreviation

52632: numeric value

89840: human being oy
33449: description and abstract concept

Using these classifications outputted by recursive LM calls, the model passes this variable into
a function to categorize each programmatically. From here, the root LM is choosing to answer
the rest of the question programmatically rather than by trying to output all pairs through model
generaetions.

Execution 5

Execution Time: 0.001s

fi) identify with the re
classification_lines = all_classifications.strip().split('\n')

Dict
user_categories

for line in classification_lines:
if ":' in line:
try:
user_id_str, category = line.splitl
user_id = int(user_id_str.stripQ))
category = category.strip()

if user_id not in user_categories:
user_categories[user_id] = set()
user_categories[user_id].add(category)
except:
print(f"Could not parse line: {line}")

print(f"Total unique users: {len(user_categories)}")
print("Sample user categories:")
count = @
for user_id, categories in user_categories.items():
print(f"User {user_id}: {categories}")
count += 1
if count >= 10:
break

The root LM specifically looks for instances satisfying the query (the user in the pair has to have
at least one instance with a description and abstraction concept or abbreviation) and adds them to a
variable of target users.

17

Execution 6

Execution Time: 0.000s

entify i
target_users = set(

for user_id, categories in user_categories.items():
if "description and abstract concept™ in categories or "abbreviation" in categories
target_users.add(user_id)

print(f"Users with at least one description/abstract concept or abbreviation question: {len(target_users)}")
print("First 20 target users:", sorted(list(target_users))[:20])

Users with at least one description/abstract concept or abbreviation question: 131
First 20 target users: [12258, 13578, 13647, 13973, 15245, 15587, 16303, 16359, 16542, 17200, 19125, 19341, 20645, 22522, 24283, 24601, 24901, 25857, 25984, 27272]

Execution 7

Execution Time: 0.002s

target_users_sorted sorted(list(target_users))
pairs = []

for i in range(len(target_users_sorted)):
for j in range(i+l, len(target_users_sorted)):
pairs.append((target_users_sorted[i], target_users_sorted[j]1))

print(f"Total pairs: {len(pairs)}")

print("First 20 pairs:")

for i in range(min(20, len(pairs))):
print(pairs[i])

Total pairs: 8515
First 20 pairs:
(12258, 13578)
(12258, 13647)

The root LM forms a list of unique pairs with this loop, and is essentially now able to answer the
question.

Execution 8

Execution Time: 0.002s

if pairs:
formatted_pai [f"({pair[@]}, {pair[1]})" for pair in pairs]
final_result = .join(formatted_pairs)

print("Final result (first 50 lines):")

print("\n".join(formatted_pairs[:50]))
else:

final_result = "[]"

Final result (first 50 lines):
(12258, 13578)
(12258, 13647)
(12258, 13973)
(12258, 15245)
(12258, 15587)
(12258, 16303)
(12258, 16359)
(12258, 16542)
(12258, 17200)
(12258, 19125)

The model has stored these pairs in a variable to be outputted at the end. At this stage, the model
has the answer (assuming the sub-LM calls were entirely correct) ready in a variable to be returned.

Step 2. By this point the model has already successfully extracted the answer. Interestingly how-
ever, as we observed frequently with Qwen3-Coder, the model will continue to repeatedly verify its
answers. The model also attempts to return its answer wrapped in a ‘FINAL_VAR()‘ tag, but it does
not accept its answer. This is likely a consequence of a) not tuning the prompt specifically for this
model and b) the model not being trained to act as an RLM, but we include these descriptions in text
for brevity. At this step, the model checks its pairs.

Step 3. The model prints out the first and last pairs and attempts to have the root LM verify its
correctness.

Step 4. The model prints out statistics to verify whether its answer matches with its process of
forming the answer.

18

Step 5. The model repeats its process in Step 1 and attempts to re-generate the answer with more
recursive sub-LM calls!

Step 6 - 11. The model repeats its process in Step 1 with slight difference and again attempts to
re-generate the answer with more recursive sub-LM calls! It actually repeats this process 5 times,
before finally returning an answer after being prompted to provide a final answer. However, the
answer it returns is the root LM generating an answer, which actually provides the wrong answer
— in this instance, it never returned the answer it built up in its code environment through sub-LM
calls. This is an example of a case where the RLM failed.

B.3 RLM(QWEN3-CODER) ON OOLONG-QUERY_212

The total cost of this trajectory was $0.38. In this task, the agent must answer an aggregate query
over a set of entries in a list of questions. The query is always about aggregating some kind of se-
mantic transformation over the entries, meaning rule-based syntax rules are unable to perform these
transformations programmatically. In this example, the RLM is answering the following question:

The following lines contain thousands of general-knowledge questions, one per line. Each line has a User

ID, which is not necessarily unique, i.e. each User ID can be associated with multiple questions.
Each question has an answer that can be described as one of 6 categories: ’‘numeric value’, ’‘entity
’, "location’, ’description and abstract concept’, ’abbreviation’, ’‘human being’ -- remember that
they are not explicitly labeled, so you need to figure out the label from the semantics of the
question. You will be asked to answer questions about the aggregate label statistics across all
examples in this dataset. Do not try to guess, estimate, or approximate the result. Answer the
following: In the above data, is label ’'description and abstract concept’ more common, less common,
or the same frequency as label ’'numeric value’? Give your final answer in the form ’Answer:
description and abstract concept is [X] numeric value’, where [X] is ’‘more common than’, ’less
common than’, or ’same frequency as’.

Step 1. The model begins by probing the context with various code snippets, including printing out
the first few characters and printing out the first few lines. Like in the OOLONG-Pairs example, we
noticed that Qwen3-Coder-480B-A35B tends to output multiple code blocks in a single step unlike
GPT-5, which makes outputs in a more iterative fashion.

Execution 3

Execution Time: 0.001s

Le context into lines to understand the structure better

line ontext.strip().split('\n")
print(f"Total number of lines: {len(lines)}")

print("First 10 lines:")
for i, line in enumerate(lines[:10]):
print(f"{i+1}: {line}")

Total number of lines: 3189
First 10 lines:

1: The following lines contain 3182 general-knowledge questions, one per line. Each question has an answer that can be described as one of 6 categories: 'descriptic
2:
: You will be asked to answer questions about the aggregate label statistics across all 3182 examples in this dataset. Do not try to guess, estimate, or approximat
Date: Sep 06, 2023 || User: 14512 || Instance: What is a tonne ?
Date: Jun 21, 2023 || User: 16295 || Instance: Where is the Orange Bowl ?
|

Date: Jan 14, 2024

Date: Sep 11, 2024 Instance: On average , how long time does it take to type a screenplay ?

1l
1l
User: 98142 || Instance: What king is satirized in the line : ' The King was in the countinghouse , counting all his money '' ?
| User: 40405 ||
1

Date: Jan @9, 2024 || User: 17518 Instance: What articles of clothing are tokens in Monopoly ?
0: Date: Feb 26, 2024 || User: 80488 || Instance: What U.S. President was the first to breed mules ?

As mentioned previously, Qwen3-Coder differs from GPT-5 in how liberal it is in its use of sub-calls.
The function Qwen3-Coder defines for classifying entries semantically uses a sub-LM call per line,
leading to thousands of recursive sub-calls when applied to the full input context.

Execution 6

Execution Time: 84.031s

parts = line.split(
if len(parts) > 1:

return parts[1].strip(Q)
return line.stripQ

19

i
classification = 1lm_query(f"""Classify the following question into one of these 6 categories
'numeric value', 'entity', 'location', 'description and abstract concept', 'abbreviati , "human being

Question: {question}

Respond with ONLY the category name, nothing else.""™")
return classification.strip().lower()

E: ot's test this on a fi samp
test_questions = [extract_question(line) for line in lines[:10]]
print("Test questions and their classifications:")
for q in test_questions:
if q: 4 ip empty

category = classify_question(q)

print(f"Question: {q}")

print(f"Category: {category}")

Test questions and their classifications:
Question: ‘description and abstract concept', ‘entity’, ‘human being', ‘numeric value', ‘location’, ‘'abbreviation’.

Category: description and abstract concept

Question: You will be asked to answer questions about the aggregate label statistics across all 3182 examples in this dataset. Do not try to guess, estimate, or apg
Category: numeric value

Question: Sep 06, 2023 || User: 14512 || Instance: What is a tonne ?

Category: description and abstract concept

Step 2. After defining and testing several functions for running the above classification question
over its input context, the root LM launches a long code execution call to classify and answer the

query.

k&) Recursive LLM Call (382) >

“\, Code Executions (4)

Execution 1

Execution Time: 111.691s

ntinue p
batch_size = 30
description_count =
numeric_count = @
processed_count =

Process more ns for better accuracy - let's do 1 qui
for i in range(@, min(1000, len(all_questions)), batch_size)
batch = all_questions[i:i+batch_size]
if not batch:
continue

try:
classifications = process_batch(batch)
for classification in classifications:
classification_lower = classification.lower().strip()
if 'description and abstract concept' in classification_lower
description_count += 1
elif 'numeric value' in classification_lower
numeric_count += 1
processed_count += len(batch)
if processed_count % 100 == 0:
print(f"Processed {processed_count} questions. Description: {description_count}, Numeric: {numeric_count}")
except Exception as e:
print(f"Error processing batch starting at {i}: {e}")
idual pre
for question in batch:
try:
category = classify_question(question)
category_lower = category.lower().strip()
if 'description and abstract concept' in category_lower
description_count += 1
elif 'numeric value' in category_lower:
numeric_count += 1
processed_count += 1
except:
pass

print(f"Final counts from {processed_count} questions:")
print(f"Description and abstract concept: {description_count}")
print(f"Numeric value: {numeric_count}")

Final. The model concludes programmatically from the large number of sub-calls it performed in
Step 2 that ‘Answer: description and abstract concept is less common than numeric value‘ was the
correct answer. While the RLM was able to conclude the correct answer, it likely would have been
able to solve the question with significantly less sub-calls.

20

B.4 RLM(GPT-5) oN CODEQA-QUERY_44

The total cost of this trajectory was $0.27. In this task, the agent must answer a question that involves
understanding a large codebase. The codebase here is 900k tokens, and the agent must answer the
following query:

You are a helpful assistant that can answer questions about code repositories. You must answer the given
question: This is a code repository used for fine-tuning text-to-image models or training LoRA
models. The repository is used for the author’s research on some related uses. Below are the steps
I followed during the process. Could you help me check which one is right statement? based on the
stored context answer with exactly one number choice using only the choices provided:

0: In this repository, during the training process, tasks are divided into multiple processes based on
the configuration file, such as "extension," "extract," "generate," and so on. For each process, a
corresponding class has been written. These classes mostly inherit the attributes of the BaseJob
class and accept an OrderedDict dictionary, which represents a pre-defined configuration file that
we have set up in advance.Therefore, multiple processes can be executed in parallel, allowing for
the simultaneous completion of multiple tasks. This parallelization significantly enhances
efficiency by distributing the workload, ensuring that tasks such as data extension, extraction,
and generation can run concurrently, reducing the overall time required for training.

1: Prepare the dataset, typically supporting formats such as JPG, JPEG, PNG, and write corresponding
txt files to describe the content of the images. Trigger words can be added, so after training is
complete, we can generate images with the trigger words in the prompt. In the config directory,
find the configuration files and modify the .yml files. Specify the model path, dataset location,
storage location, and where to save the LoRA model. Only after configuring these settings can it
run properly.

2: Before training, we can use a labeled dataset or the built-in annotation tool in this repository. To
use this annotation tool, we need to download the Florence model, which is used to infer the
content of images. Additionally, this repository is capable of supporting multi-GPU (multi-card)
training, which can significantly speed up the training process by distributing the workload across

multiple GPUs. To enable this feature, all you need to do is configure the GPU parameters in the
provided configuration file. By specifying the available GPUs, the training process can
automatically take advantage of the hardware for parallel processing, making it suitable for larger
datasets and more complex models. This flexibility in configuration allows for efficient training,
regardless of the scale of the task.

3: This project has several ways to run. For general users, there are models with a UI interface and
terminal-based models. However, both require a configuration file to specify training parameters
and data storage locations. After LoRa training is completed, we can run the run.py function to
perform prompt-to-image inference, but this file needs to set the configuration parameters
specifically, if you want to use the LoRa model you trained before, you need to specify
assistant_lora_path and lora_path in the configuration parameters, otherwise only the original
model will be run. (indexed from 0 to 3).

Step 1. It is not always true that an input context can be solved by partitioning it and recursively
sub-querying models over each partition, but in tasks that are not information dense, this is possible.
In this case, the model chooses to break down the codebase into parts and sub-query LMs to look for
clues. The model then aggregates these clues and provides a final answer as a separate sub-query.

k&) Recursive LLM cCall (11) >

“\\ Code Executions (1)

Execution 1

Execution Time: 373.960s

chunk_size = 380000
n = (len(context) + chunk_size - 1) // chunk_size
findings = [

question = """You are given a chunk of a code repository (docs, code, configs).
We need to decide which ONE of the following statements correctly matches this repo (text-to-image fine-tuning / LoRA training):

: Training is divided into multiple processes (extension, extract, generate, etc.), each as a class inheriting BaseJob, taking an Ordered
: Prepare JPG/JPEG/PNG dataset with .txt captions; trigger words possible; edit .yml configs (model path, dataset, output, LoRA save path
: Use built-in annotation tool requiring downloading the Florence model to infer image content; supports multi-GPU by configuring GPUs in
3: Project provides UI and terminal modes; after LoRA training, run run.py for prompt-to-image; must set assistant_lora_path and lora_path

From THIS CHUNK ONLY, extract any direct evidence (file names, README lines, code, configs) that support or contradict any of ©/1/2/3. Quo

for i in range(n):
chunk = context[i*chunk_size:(i+1)*chunk_size]
ans = 1lm_query(f"{question}\n\n--- CHUNK {i+1}/{n} START ---\n{chunk}\n--- CHUNK END ---")
findings.append(ans)
print(f"Chunk {i+1}/{n} analyzed.

summary = llm_query("Aggregate the following per-chunk findings to decide which ONE statement (@/1/2/3) best matches the repository overal
print(summary)

Final. The RLM answers choice ‘1°, which is the correct answer.

21

C ADDITIONAL RUNTIME AND COST ANALYSIS OF RLMS

We supplement the cost and runtime analysis of RLMs with additional, fine-grained plots. In Fig-
ures [7} [8] we include a histogram for the cost of each method on every task for both GPT-5 and
Qwen3-Coder. We generally observe long-tailed, high-variance trajectories for RLMs in both mod-

els.

We additionally include log-scaled runtime plots for each method below. As we remarked in
the runtime for these methods can be significantly improved through asynchrony of LM calls and
additional prompting to discourage long sub-LM calls or code.

For the scaling plot in Figure[I] we also provide the average API cost per task.

Runtime Quartiles Across All Tasks by Method (GPT-5)

B Base Model (GPT-5)

B RLM(GPT-5) with REPL

EZZA RLM(GPT-5) with REPL (no sub-calls)
B Summary Agent (GPT-5)

3 CodeAct (GPT-5) + BM25

Runtime (seconds)

Percentile

Figure 5: Plotted quartiles of the runtime GPT-5 across OOLONG, OOLONG-Pairs, CodeQA, and
BrowseComp+ (1K) for all methods described in We plot the 25th, 50th, 75th, and 95th

percentiles.

Runtime Quartiles Across All Tasks by Method (Qwen3-Coder-480B)

[BEm Base Model (Qwen3-Coder-480B)

[RLM(Qwen3-Coder-480B) with REPL

EZZA RLM(Qwen3-Coder-480B) with REPL (no sub-calls)
B Summary Agent (Qwen3-Coder-480B)

[CodeAct (Qwen3-Coder-480B) + BM25

Runtime (seconds)

Percentile

Figure 6: Plotted quartiles of the runtime Qwen3-Coder-480B across OOLONG, OOLONG-Pairs,
CodeQA, and BrowseComp+ (1K) for all methods described in @ We plot the 25th, 50th, 75th,

and 95th percentiles.

22

Cost Distributions by Method and Benchmark

Base Model (gpt-5)
OO0LONG OLONG-Pairs Codeqa . BrowseComp+ (1K)
15 = e so10s 4 == e so1e 3
08
3
z1w0 3 22 Zos
H 1 H H No data
H H H foa
£, H £ H
N 02
o o o
012 013 014 015 016 017 018 015 020 005 010 015 020 025 030 035 00s 010 o015 o020 025 030 00 02 s 06 08 1o
cost(5) Cost(5) cost(5) cost(s)
RLM(gpt-5) with REPL
00LONG OLONG-Pairs CodeQa BrowseComp+ (1K)
2 T e s 10 T Er ErT
i i
i 8 i
2 i > i
g0 i £
H i H
H . H
g £
Sl !
2
ol L_-._,_-_,_-_,_-_ o | =
° 1 2 3 H [[o o1 02 03 o0& 05 HIR & 7
Cost(5) cost(5) cost(5) Cost(5)
RLM(gpt-5) with REPL (no sub-c
OOLONG OOLONG-Pairs CodeQa BrowseComp+ (1K)
== Heom s0 004 10 T == e saon so{ mt == e 301830 T —= e so4471
» i i sof i
8 i 301 Ml i
315 > i > i > i
H Zs 1 g i I5aal N
H H i Sa0] i H i
g10 g4 i H i gl i
H £ i H i £
s 2 i ol 2
o o a_u i o o
000 025 050 075 100 125 150 175 o 1 2 3 3 00 05 10 15 20 25 30 35 40 o 1z 3 a4 5 s
Cost(5) Cost(5) cost(s) cost(s)
Summary Agent (gpt-5)
OOLONG OOLONG-Pairs CodeQA BrowseComp+ (1K)
T == e sa12% 1 — e s1ote == e s05707
6 i
g £
g i
£ 5
o o
0120 0125 0130 0135 0140 0145 0150 0155 00s 010 o015 02 02 030 o 1 2 H 4 3 04 06 07 08
Cost(s) cost() cost(s)
CodeAct (gpt-5) + BM25
OOLONG 0OLONG- CodeQA BrowseComp+ (1K)
== e 306095 == e 507500 — e s00sm1 T — e 307096
2 i
30 L 1
> 20 :
g H g '
g0 g1 H i
H £ H !
10 20 |
s
N o . | o
00 05 10 15 20 25 30 35 40 025 050 075 100 125 150 175 200 000 005 010 015 020 025 030 o 1 2 3 4 s 6
cost(s) Cost(5) Cost(5) cost(s)

Figure 7: Histogram of the API costs for GPT-5 across OOLONG, OOLONG-Pairs, CodeQA, and
BrowseComp+ (1K) for all methods described in §2.7]

Cost Distributions by Method and Benchmark

Base Model (qwen3-coder-480b-a35b-instruct)
00LONG

00LONG-Pairs Coden N BrowseComps+ (1K)
o [T T 15 == e smesm 3
08
ze Zw 32 Zos
H H H H Nodata
g £ H os
£, g H
2 0z
o o o
0042 0.044 0046 0.048 0050 0.052 0054 0.056 005 o010 o015 020 02 o030 o oz o0s o8 o8 10
cox(s) cost) cox(5) o)
RLM(qwen3-coder-480b-a35b-instruct) with REPL
OOLONG ‘OOLONG-Pairs. CodeQA BrowseComp+ (1K)
8 == Mean: $0.6072 31 == Mean 51,0207 ' == Mean: $0.9217 q == Mean: 50.8448
15 "
3
z 32 3 230
. H £
g £, H g
: I I I I) "
o 1 h L o
20 25 02 04 06 08 10 12 14 16 ° 1 2 3 L
cost () costs)
OOLONG-Pairs. Code0a BrowseComp+ (1K)
3 == Mean: $1.7707 “ == Mean: $0.1755 25 == Mean: $0.8224
2 2
g 22 3 z
H § § §15
H H HE H
H £ £ H
H £ £ £
I I 10 s
o o
01 o2 03 o0a 05 o5 07 1 3 T s G0 o5 10 15 Zo 25 30
cons) costs) conts)
Summary Agent (qwen3-coder-480b-a35b-instruct)
O0LONG OOLONG-Pairs BrowseComp+ (1K)
8 == Mean: $0.1475 12.5{ == Mean: 50,0526 | = = Mean: $8.9843
2
5 100
z z z1s
§ £s g
2. H H
H Eso o
2 25 s
o & o
of0 o1 0150 0155 0160 0012 004 0046 004 005 0052 0058 0056 o 2 6 s 10 12
Cont(s) cost (5 o)
CodeAct (qwen3-coder-480b-a35b-instruct) + BM25
(0OLONG ‘OOLONG-Pairs. CodeQA BrowseComp+ (1K)
6 ! == Mean: == Mean: $1. 50 ' = Mean:
T e o e H T
i a i
i 8 o i
74 z > |
g 2
g £ H
g £, £
2 10
N] | N
00 o5 10 15 20 25 30 35 40 06 o8 1o 12 14 16 18 3 1 z 3 3
contis) cons) conts)

Figure 8: Histogram of the API costs for Qwen3-Coder-480B across OOLONG, OOLONG-Pairs,
CodeQA, and BrowseComp+ (1K) for all methods described in §2.2]

23

Average API Cost

25
e GPT-50n S-NIAH (I = O(1))
#— RLM(GPT-5) on S-NIAH (Z = O(1))

— 20
& === GPT-5 on OOLONG trec-ga (I = O(N))
§ i RLM(GPT-5) on OOLONG trec-qa (I = O(N))
3
g 15
5 e GPT-5 0n OOLONG-Pairs (I = O(N2))
f- i RLM(GPT-5) on QOLONG-Pairs (Z = O(N?))
1]
8 1o
L]
o
g
o
Z o5

00

& A 3 N+ o S
@ L & o & o &

Input Context Length (log scale)

Figure 9: We plot the API cost in USD for the runs in Figure

D ADDITIONAL METHODS AND BASELINE DETAILS

D.1 PROMPTS FOR EXPERIMENTS

We focus on methods that are entirely task agnostic, so we fix our prompt for each method across all
tasks. For the RLM prompt, the only difference between GPT-5 and Qwen3-Coder is an added line
in the beginning that warns Qwen3-Coder not to use too many sub-LM calls — we found in practice
that without this warning, the model will try to perform a subcall on everything, leading to thousands
of LM subcalls for basic tasks! In this section, we provide the system prompt used for all methods
in §2.1] (other than the base model, which does not include a system prompt).

(1a) The system prompt for RLM with REPL for GPT-5:

You are tasked with answering a query with associated context. You can access, transform, and analyze
this context interactively in a REPL environment that can recursively query sub-LLMs, which you are
strongly encouraged to use as much as possible. You will be queried iteratively until you provide
a final answer.

Your context is a {context_type} with {context_total length} total characters, and is broken up into
chunks of char lengths: {context_lengths}.

The REPL environment is initialized with:
1. A ‘context' variable that contains extremely important information about your query. You should check
the content of the ‘context' variable to understand what you are working with. Make sure you look

through it sufficiently as you answer your query.

2. A ‘llm_query' function that allows you to query an LLM (that can handle around 500K chars) inside
your REPL environment.

3. The ability to use ‘print()‘ statements to view the output of your REPL code and continue your
reasoning.

You will only be able to see truncated outputs from the REPL environment, so you should use the query
LIM function on variables you want to analyze. You will find this function especially useful when
you have to analyze the semantics of the context. Use these variables as buffers to build up your
final answer.

Make sure to explicitly look through the entire context in REPL before answering your query. An example
strategy is to first look at the context and figure out a chunking strategy, then break up the
context into smart chunks, and query an LLM per chunk with a particular question and save the
answers to a buffer, then query an LLM with all the buffers to produce your final answer.

You can use the REPL environment to help you understand your context, especially if it is huge. Remember
that your sub LLMs are powerful -- they can fit around 500K characters in their context window, so
don’t be afraid to put a lot of context into them. For example, a viable strategy is to feed 10
documents per sub-LLM query. Analyze your input data and see if it is sufficient to just fit it in
a few sub-LLM calls!

When you want to execute Python code in the REPL environment, wrap it in triple backticks with ’repl’
language identifier. For example, say we want our recursive model to search for the magic number in
the context (assuming the context is a string), and the context is very long, so we want to chunk
it:

repl

chunk = context[:10000]

answer = 1llm_query (f"What is the magic number in the context? Here is the chunk: {{chunk}}")

print (answer)
o

24

As an example, suppose you’re trying to answer a question about a book. You can iteratively chunk the
context section by section, query an LLM on that chunk, and track relevant information in a buffer.

“Virepl
query = "In Harry Potter and the Sorcerer’s Stone, did Gryffindor win the House Cup because they led?"
for i, section in enumerate (context) :
if 1 == len(context) - 1:
buffer = 1lm_query(f"You are on the last section of the book. So far you know that: {{buffers}}.
Gather from this last section to answer {{query}}. Here is the section: {{section}}")
print (f"Based on reading iteratively through the book, the answer is: {{buffer}}")
else:

buffer = 1llm_query (f"You are iteratively looking through a book, and are on section {{i}} of {{
len(context) }}. Gather information to help answer {{query}}. Here is the section: {{section
FEM)

print (f"After section {{i}} of {{len(context)}}, you have tracked: {{buffer}}")

As another example, when the context isn’t that long (e.g. >100M characters), a simple but viable
strategy is, based on the context chunk lengths, to combine them and recursively query an LLM over
chunks. For example, if the context is a List([str], we ask the same query over each chunk:

“Virepl
query = "A man became famous for his book "The Great Gatsby". How many Jjobs did he have?"
Suppose our context is T1M chars, and we want each sub-LLM query to be ~0.1M chars so we split it into
5 chunks
chunk_size = len(context) // 10
answers = []
for i in range (10):
if 1 < 9:
chunk_str = "\n".join(context [i«chunk_size: (i+1) *chunk_size])
else:
chunk_str = "\n".join (context [i+chunk_size:])
answer = 1llm_query (f"Try to answer the following query: {{query}}. Here are the documents:\nf{{
chunk_str}}. Only answer if you are confident in your answer based on the evidence.")

answers.append (answer
print (f"I got the answer from chunk {{i}}: {{answer}}")
final_answer = llm_query (f"Aggregating all the answers per chunk, answer the original query about total
number of jobs: {{query}}\\n\\nAnswers:\\n" + "\\n".join (answers)

As a final example, after analyzing the context and realizing its separated by Markdown headers, we can
maintain state through buffers by chunking the context by headers, and iteratively querying an LLM
over it:

“Y'repl

After finding out the context is separated by Markdown headers, we can chunk, summarize, and answer

import re

sections = re.split (r’### (.+)’, context["content"])

buffers = []

for i in range(l, len(sections), 2):

header = sections[i]

info = sections[i+1]

summary = llm_query (f"Summarize this {{header}} section: {{info}}")
buffers.append (f"{{header}}: {{summary}}")

final_answer = llm_query (f"Based on these summaries, answer the original query: {{query}}\\n\\nSummaries
:\\n" + "\\n".join (buffers))

In the next step, we can return FINAL_VAR(final_answer) .

IMPORTANT: When you are done with the iterative process, you MUST provide a final answer inside a FINAL
function when you have completed your task, NOT in code. Do not use these tags unless you have
completed your task. You have two options:

1. Use FINAL(your final answer here) to provide the answer directly

2. Use FINAL_VAR(variable_name) to return a variable you have created in the REPL environment as your
final output

Think step by step carefully, plan, and execute this plan immediately in your response -- do not just
say "I will do this" or "I will do that". Output to the REPL environment and recursive LLMs as much
as possible. Remember to explicitly answer the original query in your final answer.

(1b) The diff of the system prompt for RLM with REPL (Qwen3-Coder-480B-A35B), which adds
a line from the prompt above for GPT-5:

-—— a/REPL_SYSTEM PROMPT_QWEN.txt

+++ b/REPL_SYSTEM PROMPT_QWEN. txt

@@ -15,0 +15,3 @@

+IMPORTANT: Be very careful about using ‘llm_query' as it incurs high runtime costs. Always batch as
much information as reasonably possible into each call (aim for around “200k characters per call).
For example, if you have 1000 lines of information to process, it’s much better to split into
chunks of 5 and call ‘llm_query' on each chunk (200 calls total) rather than making 1000 individual
calls. Minimize the number of ‘llm_gquery‘ calls by batching related information together.

(2) The system prompt for RLM with REPL (no sub-calls):

25

You are tasked with answering a query with associated context. You can access, transform, and analyze
this context interactively in a REPL environment, which you are strongly encouraged to use as much
as possible. You will be queried iteratively until you provide a final answer.

Your context is a {context_type} with {context_total_ length} total characters, and is broken up into
chunks of char lengths: {context_lengths}.

The REPL environment is initialized with:

1. A ‘context' variable that contains extremely important information about your query. You should check
the content of the ‘context‘ variable to understand what you are working with. Make sure you look
through it sufficiently as you answer your query.

2. The ability to use ‘print () statements to view the output of your REPL code and continue your
reasoning.

You will only be able to see truncated outputs from the REPL environment to not overflow the context
window. Use these variables as buffers to build up your final answer.

Make sure to explicitly look through the entire context in REPL before answering your query. An example
strategy is to first look at the context and figure out a chunking strategy, then break up the
context into smart chunks, and save information to buffers.

You can use the REPL environment to help you understand your context, especially if it is huge.

When you want to execute Python code in the REPL environment, wrap it in triple backticks with ’repl’
language identifier. For example, say we want to peek at the first 10000 characters of the context:

repl

chunk = context[:10000

print (f"First 10000 characters of context: {{chunk}}")

T

As another example, after analyzing the context and realizing we need to search for specific topics, we
can use regex to find relevant sections and maintain state through buffers:

repl

After finding out we need to search for "magic" and "number" in the context

import re

T

query_terms = ["magic", "number"]
relevant_sections = []
buffers = []

Search for sections containing our query terms
for i, chunk in enumerate (context) :
chunk_text = str (chunk) .lower (
if any(term in chunk_text for term in query_terms):
relevant_sections.append((i, chunk)

Process each relevant section and print findings

for section_idx, section_content in relevant_sections:
print (f"Found relevant section {{section_idx}} containing magic/number references:")
print (f"Content: {{section_content[:500]}}...") # Print first 500 chars
buffers.append (f"Section {{section_idx}}: Contains magic/number references")

print (f"Total relevant sections found: {{len(relevant_sections)}}")
print ("Summary of findings:")
for buffer in buffers:

print (£"- {{buffer}}")

T

IMPORTANT: When you are done with the iterative process, you MUST provide a final answer inside a FINAL
function when you have completed your task, NOT in code. Do not use these tags unless you have
completed your task. You have two options:

1. Use FINAL(your final answer here) to provide the answer directly

2. Use FINAL_VAR(variable_name) to return a variable you have created in the REPL environment as your
final output

Note: If you are ready to provide a final answer, you cannot write anything other than the final answer
in the FINAL or FINAL_VAR tags.

Think step by step carefully, plan, and execute this plan immediately in your response -- do not just
say "I will do this" or "I will do that". Output to the REPL environment as much as possible.
Remember to explicitly answer the original query in your final answer.

(3a) The system prompt for CodeAct with BM25. We give CodeAct access to a BM25 retriever for
BrowseComp+ following experiments in the original paper (Chen et al.,

You are a helpful assistant in a CodeAct (Code + Acting) loop that can execute Python code and search
through documents to answer questions.

You must follow this format for each step:

1. THINK: Reason about what you need to do next
2. ACT: Take an action (either execute code or SEARCH)

**ENCOURAGED: Use Python code execution when helpful!xx

- Code execution is verifiable and helps you check your work programmatically

— Use code to solve problems, verify calculations, analyze data, and validate your reasoning

— Code execution results are reliable and help you build confidence in your answers

— When in doubt, writing code to check, verify, or compute can be helpful

- xxHowever, if you can answer the question without code (e.g., straightforward factual questions,
simple reasoning), you can provide your final answer directly without executing codexx

26

Available Actions:

- Execute Python code: Write code in
returned.

— SEARCH (query) : Search through documents for information using BM25 retrieval.

- Provide final answer: When you have enough information, you can provide your final answer as "ANSWER:
[your answer]™"

““'‘python code blocks. The code will be executed and results

Format Requirements:
- Start each turn with "THINK: " followed by your reasoning
- Then either:
* Write Python code in *‘‘python blocks to execute
* Use "SEARCH (query text)" to search documents
— You can execute code multiple times, search multiple times, or combine both
— Code execution results will be returned to you automatically
— Variables persist across code executions in the same session
— xxCRITICAL: Code is executed as-is in a fresh Python environment. You must include all necessary
imports, data definitions, and context within your code blocks. Do not use fillers (e.g. FILL IN
WITH REAL DATA), they have to be written in code.x*x*

Example workflow:
Question: How many words in the list [’error’, ’correct’, ’'arrow’, ’berry’, ’carrot’, ’'mirror’] have
exactly 2 r’s?

THINK: I need to count how many words in the list have exactly 2 r’s. I can write Python code using
regex to do this.

Y 'python

import re

words = [’error’, ’'correct’, ’arrow’, 'berry’, ’'carrot’, ’'mirror’]
pattern = r’ " [“rl+r[r]l*+r[r]+$’ # Matches words with exactly 2 r’s
count = 0

matching_words = []
for word in words:
if re.match(pattern, word):
count += 1
matching_words.append (word)
print (£"{word} has 2 r’s")
print (f"Total words with 2 r’s: {count}")

[Code execution results returned...]

Example with search:

T

Question: What information is available about machine learning in the documents?

THINK: I need to search the documents for information about machine learning.
SEARCH (machine learning)

T

[Search results returned...]

Important:

- Always start with THINK to reason about your next step

- You can combine code execution and search as needed

- Be strategic to avoid exceeding the context window

- «*CODE EXECUTIONxx: Use code to verify, check, and solve problems programmatically when helpful.
However, if you can answer the question without code (e.g., straightforward factual questions,
simple reasoning), you can provide your final answer directly without executing code.

— x«CODE EXECUTION CONTEXT*x: Your code is executed as-is. You must explicitly include all imports, data
, and context needed. Variables persist across executions, but each code block must be self-
contained with all necessary setup.

(3b) The system prompt for CodeAct. For tasks other than BrowseComp+, a retriever is not usable
/ helpful because there is nothing to index or it all fits in context. We modify the prompt to remove
the retriever.:

You are a helpful assistant in a CodeAct (Code + Acting) loop that can execute Python code to help you
answer questions.

You must follow this format for each step:

1. THINK: Reason about what you need to do next
2. ACT: Take an action (execute code)

**ENCOURAGED: Use Python code execution when helpful!xx

— Code execution is verifiable and helps you check your work programmatically

- Use code to solve problems, verify calculations, analyze data, and validate your reasoning

— Code execution results are reliable and help you build confidence in your answers

— When in doubt, writing code to check, verify, or compute can be helpful

— xxHowever, if you can answer the question without code (e.g., straightforward factual questions,
simple reasoning), you can provide your final answer directly without executing codexx

Available Actions:

27

T

- Execute Python code: Write code in python code blocks. The code will be executed and results
returned.
— Provide final answer: When you have enough information, you can provide your final answer as "ANSWER:

[your answer]"

Format Requirements:

- Start each turn with "THINK: " followed by your reasoning

- Then write Python code in ‘‘‘python blocks to execute

- You can execute code multiple times.

- Code execution results will be returned to you automatically

— Variables persist across code executions in the same session

**CRITICAL: Code is executed as-is in a fresh Python environment. You must include all necessary
imports, data definitions, and context within your code blocks. Do not use fillers (e.g. FILL IN
WITH REAL DATA), they have to be written in code.x*x*

Example workflow:

Vo

Question: How many words in the list [’error’, ’correct’, ’'arrow’, ’berry’, ’'carrot’, ’'mirror’] have
exactly 2 r’s?

THINK: I need to count how many words in the list have exactly 2 r’s. I can write Python code using
regex to do this.

python

import re

words = [’error’, ’correct’, ’arrow’, ’'berry’, ‘carrot’, 'mirror’]
pattern = r’ " [Tr]lxr[r]lxr[r]x$’ # Matches words with exactly 2 r’s
count = 0

matching_words = []

for word in words:
if re.match(pattern, word):
count += 1
matching_words.append (word)
print (f"{word} has 2 r’s")
print (f"Total words with 2 r’s: {count}")

[Code execution results returned...]

Answer: 4

Important:

- Always start with THINK to reason about your next step

- Be strategic to avoid exceeding the context window

— **CODE EXECUTION«*«*: Use code to verify, check, and solve problems programmatically when helpful.
However, if you can answer the question without code (e.g., straightforward factual questions
simple reasoning), you can provide your final answer directly without executing code.

— xxCODE EXECUTION CONTEXT*x: Your code is executed as-is. You must explicitly include all imports, data
, and context needed. Variables persist across executions, but each code block must be self-
contained with all necessary setup.

D.2 SUMMARY AGENT BASELINE

The summarization agent baseline follows the scaffold presented in |Sun et al.| (2025); [Wu et al.
(2025); [Yu et al|(2025)), which also mimics how contexts are typically compressed in a multi-turn
setting in agents like Claude Code (Anthropicl 2025). In an iterative fashion, the agent is given
inputs until its context is full, at which point it is queried to summarize all relevant information and
continue. If the agent is given a context in a single step that is larger than its model context window,
it chunks up this context and performs the summarization process over these chunks.

For our GPT-5 baseline, we chose to use GPT-5-nano to perform summarization to avoid exploding
costs. This explains the large discrepancy in cost in Table [T] between GPT-5 and Qwen3-Coder
on BrowseComp+, where the summary agent using Qwen3-Coder is nearly 20x more expensive
on average. On this task in particular, we found on a smaller set of 20 random samples that the
performance between using GPT-5 and GPT-5-nano is comparable.

E ADDITIONAL BENCHMARK DETAILS

We provide additional details about the benchmarks used to evaluate RLMs in §2]

28

E.1 OOLONG-PAIRS BENCHMARK

To create OOLONG-Pairs, we synthetically generate 20 new tasks based on the ground-truth labels
for the OOLONG [Bertsch et al.| (2025) t rec_coarse split for input contexts of length in [1024,
2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576]. Similar to OOLONG,
each question requires correctly predicing the semantic mapping for each entry.

Ensuring Z ~ O(N?) on OOLONG-Pairs. We noticed that many tasks that aggregate over pairs
of entries could actually be solved without looking at the pairs and only looking at each entry in a
linear fashion (e.g. using the principle of inclusion-exclusion in set theory), so we explicitly created
questions that ask for all pairs satisfying some properties.

Task 1

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a numeric value or location. Each of the questions can be labelled
as one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user_id_1, user_id_2), separated
by newlines.

Task 2

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with an entity or human being. Each of the questions can be labelled as
one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user-id_1, user_id-2), separated
by newlines.

Task 3

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a description and abstract concept or abbreviation. Each of the
questions can be labelled as one of the labels (the data does not provide the labels, you need to
figure out the label from the semantics of the question): description and abstract concept, entity,
human being, numeric value, location, abbreviation. In your answer, list all pairs in the format
(user_id_1, user_id_2), separated by newlines.

Task 4

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a human being or location, and all instances that are a human being
for both users must be after January 6, 2023. Each of the questions can be labelled as one of the
labels (the data does not provide the labels, you need to figure out the label from the semantics
of the question): description and abstract concept, entity, human being, numeric value, location,
abbreviation. In your answer, list all pairs in the format (user_id_1, user_id_2), separated by newlines.

Task 5

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with an entity or numeric value, and all instances that are an entity for both
users must be before March 15, 2023. Each of the questions can be labelled as one of the labels (the
data does not provide the labels, you need to figure out the label from the semantics of the question):
description and abstract concept, entity, human being, numeric value, location, abbreviation. In your
answer, list all pairs in the format (user_id_1, user_id_2), separated by newlines.

29

Task 6

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a location or abbreviation. Each of the questions can be labelled
as one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user_id_1, user_id_2), separated
by newlines.

Task 7

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a description and abstract concept or numeric value, and all instances
that are a numeric value for both users must be after February 1, 2023. Each of the questions can
be labelled as one of the labels (the data does not provide the labels, you need to figure out the label
from the semantics of the question): description and abstract concept, entity, human being, numeric
value, location, abbreviation. In your answer, list all pairs in the format (user_id_1, user_id_2),
separated by newlines.

Task 8

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a human being or description and abstract concept. Each of the
questions can be labelled as one of the labels (the data does not provide the labels, you need to
figure out the label from the semantics of the question): description and abstract concept, entity,
human being, numeric value, location, abbreviation. In your answer, list all pairs in the format
(user_id_1, user_id_2), separated by newlines.

Task 9

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with an entity or location, and all instances that are a location for both
users must be after April 10, 2023. Each of the questions can be labelled as one of the labels (the
data does not provide the labels, you need to figure out the label from the semantics of the question):
description and abstract concept, entity, human being, numeric value, location, abbreviation. In your
answer, list all pairs in the format (user_id_1, user_id_2), separated by newlines.

Task 10

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) where both users
have at least one instance with a numeric value or abbreviation, and all instances that are an abbre-
viation for both users must be before May 20, 2023. Each of the questions can be labelled as one of
the labels (the data does not provide the labels, you need to figure out the label from the semantics
of the question): description and abstract concept, entity, human being, numeric value, location, ab-
breviation. In your answer, list all pairs in the format (user_id_1, user_id_2), separated by newlines.

Task 11

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one user
has at least one instance with entity and one with abbreviation, and the other user has exactly one
instance with entity. Each of the questions can be labelled as one of the labels (the data does not
provide the labels, you need to figure out the label from the semantics of the question): description
and abstract concept, entity, human being, numeric value, location, abbreviation. In your answer,
list all pairs in the format (user_id_1, user_id_2), separated by newlines.

Task 12

30

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one
user has at least two instances with numeric value, and the other user has at least one instance
with location and at least one instance with human being. Each of the questions can be labelled
as one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user_id_I, user_id_2), separated
by newlines.

Task 13

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one user
has exactly one instance with description and abstract concept, and the other user has at least one
instance with abbreviation and at least one instance with entity. Each of the questions can be labelled
as one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user_id_1, user_id_2), separated
by newlines.

Task 14

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one
user has at least one instance with human being and at least one instance with numeric value, and
the other user has exactly two instances with location. Each of the questions can be labelled as
one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user-id_1, user_id-2), separated
by newlines.

Task 15

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one user
has at least one instance with entity, at least one instance with location, and at least one instance
with abbreviation, and the other user has exactly one instance with numeric value. Each of the
questions can be labelled as one of the labels (the data does not provide the labels, you need to
figure out the label from the semantics of the question): description and abstract concept, entity,
human being, numeric value, location, abbreviation. In your answer, list all pairs in the format
(user_id_1, user_id_2), separated by newlines.

Task 16

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one
user has at least one instance with description and abstract concept and at least one instance with
human being, and the other user has at least two instances with entity and exactly one instance with
abbreviation. Each of the questions can be labelled as one of the labels (the data does not provide the
labels, you need to figure out the label from the semantics of the question): description and abstract
concept, entity, human being, numeric value, location, abbreviation. In your answer, list all pairs in
the format (user_id_1, user_id_2), separated by newlines.

Task 17

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one user
has exactly one instance with numeric value, and the other user has at least one instance with location
and at least one instance with description and abstract concept. Each of the questions can be labelled
as one of the labels (the data does not provide the labels, you need to figure out the label from the
semantics of the question): description and abstract concept, entity, human being, numeric value,
location, abbreviation. In your answer, list all pairs in the format (user_id_I, user_id_2), separated
by newlines.

31

Task 18

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one user
has at least one instance with abbreviation and exactly one instance with human being, and the other
user has at least one instance with entity and at least one instance with numeric value. Each of the
questions can be labelled as one of the labels (the data does not provide the labels, you need to figure
out the label from the semantics of the question): description and abstract concept, entity, human
being, numeric value, location, abbreviation. In your answer, list all pairs in the format (user_id_1,
user_id_2), separated by newlines.

Task 19

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one
user has at least two instances with location and at least one instance with entity, and the other
user has exactly one instance with description and abstract concept and exactly one instance with
abbreviation. Each of the questions can be labelled as one of the labels (the data does not provide the
labels, you need to figure out the label from the semantics of the question): description and abstract
concept, entity, human being, numeric value, location, abbreviation. In your answer, list all pairs in
the format (user_id_1, user_id_2), separated by newlines.

Task 20

In the above data, list all pairs of user IDs (no duplicate pairs, list lower ID first) such that one
user has at least one instance with numeric value and at least one instance with human being, and
the other user has at least one instance with location, at least one instance with entity, and exactly
one instance with abbreviation. Each of the questions can be labelled as one of the labels (the data
does not provide the labels, you need to figure out the label from the semantics of the question):
description and abstract concept, entity, human being, numeric value, location, abbreviation. In
your answet, list all pairs in the format (user_id_1, user_id_2), separated by newlines.

E.2 SCALING HUGE DOCUMENT CORPUSES IN BROWSECOMP+

In addition to the BrowseComp+ (Chen et al.| 2025) results for & = 1000 documents in we
also include a smaller set of results on a subset of 20 tasks from the original 150 to show how
performance degrades as a function of input size. In our original experiments, the base LMs were
unable to handle the input contexts, so we add results to show how they degrade. We include two
new baselines, namely ReAct w/ GPT-5 + BM25 (a variant of the CodeAct baseline without access
to a code environment) and GPT-5 + pre-query BM25 (GPT-5 on pre-queried documents).

Score on BrowseComp-Plus vs # Context Docs Average API Cost($) per Query vs # Context Docs

100% GPT-5

\ 200 GPT-5 (Truncated) il
—i= GPT:5 +BM25 (k=40)
=4~ ReACT w/ GPT-5 + BM25
175 RLM (GPT-5)
80% o, RLM(GPT-5) wio sub-calls
.

150

8

B

.
N
&

&
=
Average API Cost ($)
=
8

Correct Answer Rate (%)
°
Bl

20% P15 050
GPT-5 (Truncated)
—i— GPT5 + Pre-query BM25 (k=40) —
~#= ReACT (GPT-5) + BM25 o ./

RLM(GPT-5)
0% RLM(GPT-5) wio sub-calls
' ' i { i {
10 50 100 1000 10 50 100 1000
Number of Documents in Context Number of Documents in Context

Figure 10: We plot the performance and API cost per answer of various methods using GPT-5 on 20
random queries in BrowseComp-Plus given increasing numbers of documents in context. Only the
iterative methods (RLM, ReAct) maintain reasonable performance at 100+ documents.

32

RLMs are able to scale well without performance degradation. RLM(GPT-5) is the only model /
agent able to achieve and maintain perfect performance at the 1000 document scale, with the ablation
(no recursion) able to similarly achieve 90% performance. The base GPT-5 model approaches,
regardless of how they are conditioned, show clear signs of performance dropoff as the number of
documents increase.

RLM inference cost scales reasonably. The inference cost of RLMs on this setup scale log-linearly,
and are reasonably bounded compared to other common strategies like ReAct + BM25. If we ex-
trapolate the overall token costs of GPT-5 assuming it has an infinite context window, we observe
that the inference cost of using RLM(GPT-5) is cheaper.

33

	Introduction
	Scaling Long Context Tasks
	Tasks
	Methods and Baselines

	Results and Discussion
	Emergent Patterns in RLM Trajectories

	Related Works
	Limitations and Future Work
	Conclusion
	Negative Results: Things we Tried that Did Not Work.
	Additional RLM Trajectories
	RLM(GPT-5) on BrowseComp-Plus-Query_74
	RLM(Qwen3-Coder) on OOLONG-Pairs-Query_3
	RLM(Qwen3-Coder) on OOLONG-Query_212
	RLM(GPT-5) on CodeQA-Query_44

	Additional Runtime and Cost Analysis of RLMs
	Additional Methods and Baseline Details
	Prompts for Experiments
	Summary agent baseline

	Additional Benchmark Details
	OOLONG-Pairs Benchmark
	Scaling Huge Document Corpuses in BrowseComp+

