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Abstract

Hierarchical Reasoning Model (HRM) is a
novel approach using two small neural net-
works recursing at different frequencies. This
biologically inspired method beats Large Lan-
guage models (LLMs) on hard puzzle tasks
such as Sudoku, Maze, and ARC-AGI while
trained with small models (27M parameters)
on small data (~ 1000 examples). HRM holds
great promise for solving hard problems with
small networks, but it is not yet well un-
derstood and may be suboptimal. We pro-
pose Tiny Recursive Model (TRM), a much
simpler recursive reasoning approach that
achieves significantly higher generalization
than HRM, while using a single tiny network
with only 2 layers. With only 7M parameters,
TRM obtains 45% test-accuracy on ARC-AGI-
1 and 8% on ARC-AGI-2, higher than most
LLMs (e.g., Deepseek R1, 03-mini, Gemini 2.5
Pro) with less than 0.01% of the parameters.

1. Introduction

While powerful, Large Language models (LLMs) can
struggle on hard question-answer problems. Given
that they generate their answer auto-regressively, there
is a high risk of error since a single incorrect token can
render an answer invalid. To improve their reliabil-
ity, LLMs rely on Chain-of-thoughts (CoT) (Wei et al.,
2022) and Test-Time Compute (TTC) (Snell et al., 2024).
CoTs seek to emulate human reasoning by having the
LLM to sample step-by-step reasoning traces prior to
giving their answer. Doing so can improve accuracy,
but CoT is expensive, requires high-quality reasoning
data (which may not be available), and can be brittle
since the generated reasoning may be wrong. To fur-
ther improve reliability, test-time compute can be used
by reporting the most common answer out of K or the
highest-reward answer (Snell et al., 2024).
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Figure 1. Tiny Recursion Model (TRM) recursively improves
its predicted answer y with a tiny network. It starts with the
embedded input question x and initial embedded answer
y, and latent z. For up to Nsu,,J = 16 improvements steps,
it tries to improve its answer y. It does so by i) recursively
updating n times its latent z given the question x, current
answer y, and current latent z (recursive reasoning), and
then ii) updating its answer y given the current answer y
and current latent z. This recursive process allows the model
to progressively improve its answer (potentially address-
ing any errors from its previous answer) in an extremely
parameter-efficient manner while minimizing overfitting.
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However, this may not be enough. LLMs with CoT
and TTC are not enough to beat every problem. While
LLMs have made significant progress on ARC-AGI
(Chollet, 2019) since 2019, human-level accuracy still
has not been reached (6 years later, as of writing of
this paper). Furthermore, LLMs struggle on the newer
ARC-AGI-2 (e.g., Gemini 2.5 Pro only obtains 4.9% test
accuracy with a high amount of TTC) (Chollet et al.,
2025; ARC Prize Foundation, 2025b).

An alternative direction has recently been proposed by
Wang et al. (2025). They propose a new way forward
through their novel Hierarchical Reasoning Model
(HRM), which obtains high accuracy on puzzle tasks
where LLMs struggle to make a dent (e.g., Sudoku
solving, Maze pathfinding, and ARC-AGI). HRM is a
supervised learning model with two main novelties: 1)
recursive hierarchical reasoning, and 2) deep supervision.

Recursive hierarchical reasoning consists of recurs-
ing multiple times through two small networks (f} at
high frequency and fp at low frequency) to predict the
answer. Each network generates a different latent fea-
ture: f; outputs zy and fy outputs z; . Both features
(zr,zp) are used as input to the two networks. The
authors provide some biological arguments in favor of
recursing at different hierarchies based on the different
temporal frequencies at which the brains operate and
hierarchical processing of sensory inputs.

Deep supervision consists of improving the answer
through multiple supervision steps while carrying the
two latent features as initialization for the improve-
ment steps (after detaching them from the computa-
tional graph so that their gradients do not propagate).
This provide residual connections, which emulates
very deep neural networks that are too memory ex-
pensive to apply in one forward pass.

An independent analysis on the ARC-AGI benchmark
showed that deep supervision seems to be the primary
driver of the performance gains (ARC Prize Founda-
tion, 2025a). Using deep supervision doubled accuracy
over single-step supervision (going from 19% to 39%
accuracy), while recursive hierarchical reasoning only
slightly improved accuracy over a regular model with
a single forward pass (going from 35.7% to 39.0% ac-
curacy). This suggests that reasoning across different
supervision steps is worth it, but the recursion done
in each supervision step is not particularly important.

In this work, we show that the benefit from recursive
reasoning can be massively improved, making it much
more than incremental. We propose Tiny Recursive
Model (TRM), an improved and simplified approach
using a much smaller tiny network with only 2 lay-

ers that achieves significantly higher generalization
than HRM on a variety of problems. In doing so, we
improve the state-of-the-art test accuracy on Sudoku-
Extreme from 55% to 87%, Maze-Hard from 75% to
85%, ARC-AGI-1 from 40% to 45%, and ARC-AGI-2
from 5% to 8%.

2. Background

HRM is described in Algorithm 2. We discuss the
details of the algorithm further below.

2.1. Structure and goal

The focus of HRM is supervised learning. Given an
input, produce an output. Both input and output are
assumed to have shape [B, L] (when the shape differs,
padding tokens can be added), where B is the batch-
size and L is the context-length.

HRM contains four learnable components: the in-
put embedding f;(-;0;), low-level recurrent network
fL(+;61), high-level recurrent network fy(+;60y), and
the output head fo(+; 0o ). Once the input is embedded,
the shape becomes [B, L, D] where D is the embedding
size. Each network is a 4-layer Transformers architec-
ture (Vaswani et al., 2017), with RMSNorm (Zhang
& Sennrich, 2019), no bias (Chowdhery et al., 2023),
rotary embeddings (Su et al., 2024), and SwiGLU acti-
vation function (Hendrycks & Gimpel, 2016; Shazeer,
2020).

2.2. Recursion at two different frequencies

Given the hyperparameters used by Wang et al. (2025)
(n = 2 fr steps, 1 fy steps; done T = 2 times), a
forward pass of HRM is done as follows:

x < fi(%)

zr + fL (ZL+ZH+X)
zp « fr(zp +zg + x)
ZYH < fH (ZL +ZH)

zp « fr(zL +zg +x)
zp « zp.detach()

# without gradients
# without gradients
# without gradients

# without gradients

zy < zy.detach()

zp < fL(zL+zH +x)
zy < fg (zL +zp)

9 « argmax(fo (zu))

# with gradients
# with gradients

where 7 is the predicted output answer, z; and zp are
either initialized embeddings or the embeddings of
the previous deep supervision step (after detaching
them from the computational graph). As can be seen,
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def hrm(z, x, n=2, T=2): # hierarchical reasoning
zH, zL = z
with torch.no_grad():
for i in range(nT - 2):
zL = Lmet(zL, zH, x)
if i+ 1) %T==0:
zH = Honet(zH, zL)
# 1—step grad
zL = L_net(zL, zH, x)
zH = Honet(zH, zL)
return (zH, zL), output_head(zH), Q-head(zH)

def ACT.-halt(q, y-hat, y_true):
target_halt = (y_hat == y_true)
loss = 0.5*binary_cross_entropy(q[0], target_halt)
return loss

def ACT_continue(q, last_step):
if last_step:
target_continue = sigmoid(q[0])
else:
target_continue = sigmoid(max(q[0], q[11)))
loss = 0.5%binary_cross_entropy(q[i], target_continue)
return loss

# Deep Supervision
for x_input, y-true in train.dataloader:
z = z_init
for step in range(N_sup): # deep supervision
x = input_embedding(x_input)
z, ypred, q = hrm(z, x)
loss = softmax_cross_entropy(y-pred, y-true)
# Adaptive computational time (ACT) using Q—learning
loss += ACT-halt(q, y-pred, y-true)
_, -, qmext = hrm(z, x) # extra forward pass
loss += ACT_continue(q-next, step == N_sup - 1)
z = z.detach()
loss.backward()
opt.step()
opt.zero_grad()
if q[0] > ql[1]: # early—stopping
break

Figure 2. Pseudocode of Hierarchical Reasoning Models
(HRMs).

a forward pass of HRM consists of applying 6 function
evaluations, where the first 4 function evaluations are
detached from the computational graph and are not
back-propagated through. The authors uses n = 2
with T = 2 in all experiments, but HRM can be gener-
alized by allowing for an arbitrary number of L steps
(n) and recursions (T) as shown in Algorithm 2.

2.3. Fixed-point recursion with 1-step gradient
approximation

Assuming that (z1, zy) reaches a fixed-point (z}, z};)
through recursing from both f; and fg,

z] ~ fL(z] +zH +x)
25 ~ fy (zr +z3) ,

the Implicit Function Theorem (Krantz & Parks, 2002)
with the 1-step gradient approximation (Bai et al.,
2019) is used to approximate the gradient by back-
propagating only the last f; and fy steps. This theo-
rem is used to justify only tracking the gradients of
the last two steps (out of 6), which greatly reduces
memory demands.

2.4. Deep supervision

To improve effective depth, deep supervision is used.
This consists of reusing the previous latent features
(zp and zp) as initialization for the next forward pass.
This allows the model to reason over many iterations
and improve its latent features (z; and zy) until it
(hopefully) converges to the correct solution. At most
Nsyp = 16 supervision steps are used.

2.5. Adaptive computational time (ACT)

With deep supervision, each mini-batch of data sam-
ples must be used for Ns;, = 16 supervision steps
before moving to the next mini-batch. This is expen-
sive, and there is a balance to be reached between
optimizing a few data examples for many supervision
steps versus optimizing many data examples with less
supervision steps. To reach a better balance, a halting
mechanism is incorporated to determine whether the
model should terminate early. It is learned through
a Q-learning objective that requires passing the zy
through an additional head and running an additional
forward pass (to determine if halting now rather than
later would have been preferable). They call this
method Adaptive computational time (ACT). It is only
used during training, while the full Ny, = 16 super-
vision steps are done at test time to maximize down-
stream performance. ACT greatly diminishes the time
spent per example (on average spending less than 2
steps on the Sudoku-Extreme dataset rather than the
full Ngyp = 16 steps), allowing more coverage of the
dataset given a fixed number of training iterations.

2.6. Deep supervision and 1-step gradient
approximations replaces BPTT

Deep supervision and the 1-step gradient approxima-
tion provide a more biologically plausible and less
computationally-expansive alternative to Backpropa-
gation Through Time (BPTT) (Werbos, 1974; Rumel-
hart et al., 1985; LeCun, 1985) for solving the temporal
credit assignment (TCA) (Rumelhart et al., 1985; Wer-
bos, 1988; Elman, 1990) problem (Lillicrap & Santoro,
2019). The implication is that HRM can learn what
would normally require an extremely large network
without having to back-propagate through its entire
depth. Given the hyperparameters used by Jang et al.
(2023) in all their experiments, HRM effectively rea-
sons over Njayers (1 + 1) TNsup = 4% (2+1) 2% 16 =
384 layers of effective depth.
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2.7. Summary of HRM

HRM leverages recursion from two networks at dif-
ferent frequencies (high frequency versus low fre-
quency) and deep supervision to learn to improve
its answer over multiple supervision steps (with ACT
to reduce time spent per data example). This enables
the model to imitate extremely large depth without
requiring backpropagation through all layers. This
approach obtains significantly higher performance on
hard question-answer tasks that regular supervised
models struggle with. However, this method is quite
complicated, relying a bit too heavily on uncertain
biological arguments and fixed-point theorems that
are not guaranteed to be applicable. In the next sec-
tion, we discuss those issues and potential targets for
improvements in HRM.

3. Target for improvements in Hierarchical
Reasoning Models

In this section, we identify key targets for improve-
ments in HRM, which will be addressed by our pro-
posed method, Tiny Recursion Models (TRMs).

3.1. Implicit Function Theorem (IFT) with 1-step
gradient approximation

HRM only back-propagates through the last 2 of the 6
recursions. The authors justify this by leveraging the
Implicit Function Theorem (IFT) and one-step approx-
imation, which states that when a recurrent function
converges to a fixed point, backpropagation can be
applied in a single step at that equilibrium point.

There are concerns about applying this theorem to
HRM. Most importantly, there is no guarantee that
a fixed-point is reached. Deep equilibrium models
normally do fixed-point iteration to solve for the fixed
pointz* = f(z*) (Bai et al., 2019). However, in the case
of HRM, it is not iterating to the fixed-point but simply
doing forward passes of f; and fy. To make matters
worse, HRM is only doing 4 recursions before stopping
to apply the one-step approximation. After its first
loop of two f; and 1 fy evaluations, it only apply a
single f; evaluation before assuming that a fixed-point
is reached for both z; and zy (z} = f1(z] + 2y + X)
and zj; = fu(z] + z};))- Then, the one-step gradient
approximation is applied to both latent variables in
succession.

The authors justify that a fixed-point is reached by
depicting an example with n = 7 and T = 7 where
the forward residuals is reduced over time (Figure 3
in Wang et al. (2025)). Even in this setting, which is

different from the much smaller n = 2 and T = 2 used
in every experiment of their paper, we observe the
following:

1. the residual for zp is clearly well above 0 at every
step

2. the residual for z; only becomes closer to 0 after
many cycles, but it remains significantly above 0

3. zr is very far from converged after one f1 evalu-
ation at T cycles, which is when the fixed-point
is assumed to be reached and the 1-step gradient
approximation is used

Thus, while the application of the IFT theorem and
1-step gradient approximation to HRM has some basis
since the residuals do generally reduce over time, a
fixed point is unlikely to be reached when the theorem
is actually applied.

In the next section, we show that we can bypass the
need for the IFT theorem and 1-step gradient approxi-
mation, thus bypassing the issue entirely.

3.2. Twice the forward passes with Adaptive
computational time (ACT)

HRM uses Adaptive computational time (ACT) during
training to optimize the time spent of each data sam-
ple. Without ACT, N, = 16 supervision steps would
be spent on the same data sample, which is highly in-
efficient. They implement ACT through an additional
Q-learning objective, which decides when to halt and
move to a new data sample rather than keep iterating
on the same data. This allows much more efficient
use of time especially since the average number of su-
pervision steps during training is quite low with ACT
(less than 2 steps on the Sudoku-Extreme dataset as
per their reported numbers).

However, ACT comes at a cost. This cost is not directly
shown in the HRM's paper, but it is shown in their of-
ficial code. The Q-learning objective relies on a halting
loss and a continue loss. The continue loss requires an
extra forward pass through HRM (with all 6 function
evaluations). This means that while ACT optimizes
time more efficiently per sample, it requires 2 forward
passes per optimization step. The exact formulation is
shown in Algorithm 2.

In the next section, we show that we can bypass the
need for two forward passes in ACT.
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3.3. Hierarchical interpretation based on complex
biological arguments

The HRM'’s authors justify the two latent variables
and two networks operating at different hierarchies
based on biological arguments, which are very far
from artificial neural networks. They even try to match
HRM to actual brain experiments on mice. While in-
teresting, this sort of explanation makes it incredibly
hard to parse out why HRM is designed the way it
is. Given the lack of ablation table in their paper, the
over-reliance on biological arguments and fixed-point
theorems (that are not perfectly applicable), it is hard
to determine what parts of HRM is helping what and
why. Furthermore, it is not clear why they use two
latent features rather than other combinations of fea-
tures.

In the next section, we show that the recursive process
can be greatly simplified and understood in a much
simpler manner that does not require any biological
argument, fixed-point theorem, hierarchical interpre-
tation, nor using two networks. It also explains why 2
is the optimal number of features (z; and zp).

def latent.recursion(x, y, z, n=6):
for i in range(n): # latent reasoning
z = net(x, y, z)
y = net(y, z) # refine output answer
return y, z

def deep.recursion(x, y, z, n=6, T=3):
# recursing T—1 times to improve y and z (no gradients needed)
with torch.no_grad():
for j in range(T-1):
y, z = latent_recursion(x, y, z, n)
# recursing once to improve y and z
y, z = latent_recursion(x, y, z, n)
return (y.detach(), z.detach()), output_head(y), Q-head(y)

# Deep Supervision
for x_input, y-true in train.dataloader:
¥, z = y-init, z_init
for step in range(N_supervision):
x = input_embedding(x_input)
(y, 2z), y-hat, g-hat = deep_recursion(x, y, 2z)
loss = softmax_cross_entropy(y-hat, y_true)
loss += binary.cross_entropy(g-hat, (y-hat == y_true))
loss.backward ()
opt.step()
opt.zero_grad()
if g-hat > 0: # early—stopping
break

Figure 3. Pseudocode of Tiny Recursion Models (TRMs).

4. Tiny Recursion Models

In this section, we present Tiny Recursion Models
(TRMs). Contrary to HRM, TRM requires no com-
plex mathematical theorem, hierarchy, nor biological
arguments. It generalizes better while requiring only
a single tiny network (instead of two medium-size net-
works) and a single forward pass for the ACT (instead

of 2 passes). Our approach is described in Algorithm 3
and illustrated in Figure 1. We also provide an ablation
in Table 1 on the Sudoku-Extreme dataset (a dataset
of difficult Sudokus with only 1K training examples,
but 423K test examples). Below, we explain the key
components of TRMs.

Table 1. Ablation of TRM on Sudoku-Extreme comparing %
Test accuracy, effective depth per supervision step (T(n +
1)iayers), number of Forward Passes (NFP) per optimization
step, and number of parameters

Method Acc (%) |Depth|NFP |# Params
HRM 55.0 24 | 2 27M
TRM(T =3,n=06)| 874 42 1 5M
w/ ACT 86.1 42 | 2 5M
w/ separate fy, fr | 82.4 42 1 10M
no EMA 79.9 42 1 5M
w/ 4-layers,n =3 79.5 48 1 10M
w/ self-attention 74.7 42 1 ™
w/ T=2n=2 73.7 12 1 5M
w/ 1-step gradient | 56.5 42 1 5M

4.1. No fixed-point theorem required

HRM assumes that the recursions converge to a fixed-
point for both z; and zj; in order to leverage the 1-step
gradient approximation (Bai et al., 2019). This allows
the authors to justify only back-propagating through
the last two function evaluations (1 f; and 1 fy). To
bypass this theoretical requirement, we define a full
recursion process as containing n evaluations of ff
and 1 evaluation of fp:

zL + fL (ZL +ZH+x)

V43 (*fL (ZL +ZH+x)
zZy (—fH (ZL+ZH).

Then, we simply back-propagate through the full re-
cursion process.

Through deep supervision, the models learns to take
any (zr,zy) and improve it through a full recursion
process, hopefully making zy closer to the solution.
This means that by the design of the deep supervi-
sion goal, running a few full recursion processes (even
without gradients) is expected to bring us closer to the
solution. We propose to run T — 1 recursion processes
without gradient to improve (zr, zpy) before running
one recursion process with backpropagation.

Thus, instead of using the 1-step gradient approxi-
mation, we apply a full recursion process containing
n evaluations of f; and 1 evaluation of fy. This re-
moves entirely the need to assume that a fixed-point
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is reached and the use of the IFT theorem with 1-step
gradient approximation. Yet, we can still leverage
multiple backpropagation-free recursion processes to
improve (zp,zy). With this approach, we obtain a
massive boost in generalization on Sudoku-Extreme
(improving TRM from 56.5% to 87.4%; see Table 1).

4.2. Simpler reinterpretation of zy; and z;

HRM is interpreted as doing hierarchical reasoning
over two latent features of different hierarchies due to
arguments from biology. However, one might wonder
why use two latent features instead of 1, 3, or more?
And do we really need to justify these so-called "hier-
archical” features based on biology to make sense of
them? We propose a simple non-biological explana-
tion, which is more natural, and directly answers the
question of why there are 2 features.

The fact of the matter is: zy is simply the current
(embedded) solution. The embedding is reversed by
applying the output head and rounding to the nearest
token using the argmax operation. On the other hand,
z1, is a latent feature that does not directly correspond
to a solution, but it can be transformed into a solution
by applying zy < fr(x,zL,zy). We show an example
on Sudoku-Extreme in Figure 6 to highlight the fact
that zy does correspond to the solution, but z; does
not.

Once this is understood, hierarchy is not needed; there
is simply an input x, a proposed solution y (previously
called zp), and a latent reasoning feature z (previously
called z; ). Given the input question x, current solution
y, and current latent reasoning z, the model recursively
improves its latent z. Then, given the current latent z
and the previous solution y, the model proposes a new
solution y (or stay at the current solution if its already
good).

Although this has no direct influence on the algorithm,
this re-interpretation is much simpler and natural. It
answers the question about why two features: remem-
bering in context the question x, previous reasoning
z, and previous answer y helps the model iterate on
the next reasoning z and then the next answer y. If
we were not passing the previous reasoning z, the
model would forget how it got to the previous solu-
tion y (since z acts similarly as a chain-of-thought). If
we were not passing the previous solution y, then the
model would forget what solution it had and would
be forced to store the solution y within z instead of
using it for latent reasoning. Thus, we need both y and
z separately, and there is no apparent reason why one
would need to split z into multiple features.

While this is intuitive, we wanted to verify whether
using more or less features could be helpful. Results
are shown in Table 2.

More features (> 2): We tested splitting z into dif-
ferent features by treating each of the n recursions as
producing a different z; for i = 1,...,n. Then, each
z; is carried across supervision steps. The approach
is described in Algorithm 5. In doing so, we found
performance to drop. This is expected because, as dis-
cussed, there is no apparent need for splitting z into
multiple parts. It does not have to be hierarchical.

Single feature: Similarly, we tested the idea of taking
a single feature by only carrying zy across supervi-
sion steps. The approach is described in Algorithm 4.
In doing so, we found performance to drop. This is
expected because, as discussed, it forces the model to
store the solution y within z.

Thus, we explored using more or less latent variables
on Sudoku-Extreme, but found that having only y and
z lead to better test accuracy in addition to being the
simplest more natural approach.

Table 2. TRM on Sudoku-Extreme comparing % Test accu-
racy when using more or less latent features

Method # of features | Acc (%)
TRM y, z (Ours) 2 87.4
TRM multi-scale z n+l1=7 77.6
TRM single z 1 71.9

4.3. Single network

HRM uses two networks, one applied frequently as a
low-level module fy and one applied rarely as an high-
level module (fy). This requires twice the number of
parameters compared to regular supervised learning
with a single network.

As mentioned previously, while f; iterates on the la-
tent reasoning feature z (z; in HRM), the goal of fy
is to update the solution y (zy in HRM) given the la-
tent reasoning and current solution. Importantly, since
z + fr(x+y+z) contains x but y <+ fi(y + z) does
not contains x, the task to achieve (iterating on z versus
using z to update y) is directly specified by the inclu-
sion or lack of x in the inputs. Thus, we considered
the possibility that both networks could be replaced
by a single network doing both tasks. In doing so, we
obtain better generalization on Sudoku-Extreme (im-
proving TRM from 82.4% to 87.4%; see Table 1) while
reducing the number of parameters by half. It turns
out that a single network is enough.
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4.4. Less is more

We attempted to increase capacity by increasing the
number of layers in order to scale the model. Sur-
prisingly, we found that adding layers decreased gen-
eralization due to overfitting. In doing the oppo-
site, decreasing the number of layers while scaling
the number of recursions () proportionally (to keep
the amount of compute and emulated depth approxi-
mately the same), we found that using 2 layers (instead
of 4 layers) maximized generalization. In doing so, we
obtain better generalization on Sudoku-Extreme (im-
proving TRM from 79.5% to 87.4%; see Table 1) while
reducing the number of parameters by half (again).

It is quite surprising that smaller networks are bet-
ter, but 2 layers seems to be the optimal choice. Bai
& Melas-Kyriazi (2024) also observed optimal perfor-
mance for 2-layers in the context of deep equilibrium
diffusion models; however, they had similar perfor-
mance to the bigger networks, while we instead ob-
serve better performance with 2 layers. This may ap-
pear unusual, as with modern neural networks, gener-
alization tends to directly correlate with model sizes.
However, when data is too scarce and model size is
large, there can be an overfitting penalty (Kaplan et al.,
2020). This is likely an indication that there is too little
data. Thus, using tiny networks with deep recursion
and deep supervision appears to allow us to bypass a
lot of the overfitting.

4.5. attention-free architecture for tasks with small
fixed context length

Self-attention is particularly good for long-context
lengths when L >> D since it only requires a matrix of
[D, 3D] parameters, even though it can account for the
whole sequence. However, when focusing on tasks
where L < D, a linear layer is cheap, requiring only a
matrix of [L, L] parameters. Taking inspiration from
the MLP-Mixer (Tolstikhin et al., 2021), we can replace
the self-attention layer with a multilayer perceptron
(MLP) applied on the sequence length. Using an MLP
instead of self-attention, we obtain better generaliza-
tion on Sudoku-Extreme (improving from 74.7% to
87.4%; see Table 1). This worked well on Sudoku 9x9
grids, given the small and fixed context length; how-
ever, we found this architecture to be suboptimal for
tasks with large context length, such as Maze-Hard
and ARC-AGI (both using 30x30 grids). We show
results with and without self-attention for all experi-
ments.

4.6. No additional forward pass needed with ACT

As previously mentioned, the implementation of ACT
in HRM through Q-learning requires two forward
passes, which slows down training. We propose a
simple solution, which is to get rid of the continue loss
(from the Q-learning) and only learn a halting proba-
bility through a Binary-Cross-Entropy loss of having
reached the correct solution. By removing the continue
loss, we remove the need for the expensive second for-
ward pass, while still being able to determine when to
halt with relatively good accuracy. We found no sig-
nificant difference in generalization from this change
(going from 86.1% to 87.4%; see Table 1).

4.7. Exponential Moving Average (EMA)

On small data (such as Sudoku-Extreme and Maze-
Hard), HRM tends to overfit quickly and then diverge.
To reduce this problem and improves stability, we
integrate Exponential Moving Average (EMA) of the
weights, a common technique in GANs and diffusion
models to improve stability (Brock et al., 2018; Song &
Ermon, 2020). We find that it prevents sharp collapse
and leads to higher generalization (going from 79.9%
to 87.4%; see Table 1).

4.8. Optimal the number of recursions

We experimented with different number of recursions
by varying T and n and found that T = 3,n = 3
(equivalent to 48 recursions) in HRMand T = 3,n =6
in TRM (equivalent to 42 recursions) to lead to optimal
generalization on Sudoku-Extreme. More recursions
could be helpful for harder problems (we have not
tested it, given our limited resources); however, in-
creasing either T or n incurs massive slowdowns. We
show results at different n and T for HRM and TRM
in Table 3. Note that TRM requires backpropagation
through a full recursion process, thus increasing n too
much leads to Out Of Memory (OOM) errors. How-
ever, this memory cost is well worth its price in gold.

In the following section, we show our main results on
multiple datasets comparing HRM, TRM, and LLMs.

5. Results

Following Wang et al. (2025), we test our approach
on the following datasets: Sudoku-Extreme (Wang
et al., 2025), Maze-Hard (Wang et al., 2025), ARC-AGI-
1 (Chollet, 2019) and, ARC-AGI-2 (Chollet et al., 2025).
Results are presented in Tables 4 and 5. Hyperparame-
ters are detailed in Section 6. Datasets are discussed
below.



Recursive Reasoning with Tiny Networks

Table 3. % Test accuracy on Sudoku-Extreme dataset. HRM
versus TRM matched at a similar effective depth per super-
vision step (T(1 + 1)yayers)

HRM TRM

n =k, 4 layers n = 2k, 2 layers
k T || Depth Acc (%) || Depth  Acc (%)
1 1 9 46.4 7 63.2
2 2 24 55.0 20 81.9
3 3 48 61.6 42 87.4
4 4 80 59.5 72 84.2
6 3 84 62.3 78 OOM
3 6 96 58.8 84 85.8
6 6 168 57.5 156 OOM

Sudoku-Extreme consists of extremely difficult Su-
doku puzzles (Dillion, 2025; Palm et al., 2018; Park,
2018) (9x9 grid), for which only 1K training samples
are used to test small-sample learning. Testing is done
on 423K samples. Maze-Hard consists of 30x30 mazes
generated by the procedure by Lehnert et al. (2024)
whose shortest path is of length above 110; both the
training set and test set include 1000 mazes.

ARC-AGI-1 and ARC-AGI-2 are geometric puzzles in-
volving monetary prizes. Each puzzle is designed to
be easy for a human, yet hard for current AI models.
Each puzzle task consists of 2-3 input—output demon-
stration pairs and 1-2 test inputs to be solved. The final
score is computed as the accuracy over all test inputs
from two attempts to produce the correct output grid.
The maximum grid size is 30x30. ARC-AGI-1 con-
tains 800 tasks, while ARC-AGI-2 contains 1120 tasks.
We also augment our data with the 160 tasks from
the closely related ConceptARC dataset (Moskvichev
et al., 2023). We provide results on the public evalua-
tion set for both ARC-AGI-1 and ARC-AGI-2.

While these datasets are small, heavy data-
augmentation is used in order to improve gen-
eralization. Sudoku-Extreme uses 1000 shuffling
(done without breaking the Sudoku rules) augmenta-
tions per data example. Maze-Hard uses 8 dihedral
transformations per data example. ARC-AGI uses
1000 data augmentations (color permutation, dihedral-
group, and translations transformations) per data
example. The dihedral-group transformations consist
of random 90-degree rotations, horizontal/vertical
flips, and reflections.

From the results, we see that TRM without self-
attention obtains the best generalization on Sudoku-
Extreme (87.4% test accuracy). Meanwhile, TRM with
self-attention generalizes better on the other tasks
(probably due to inductive biases and the overcapac-

ity of the MLP on large 30x30 grids). TRM with self-
attention obtains 85.3% accuracy on Maze-Hard, 44.6%
accuracy on ARC-AGI-1, and 7.8% accuracy on ARC-
AGI-2 with 7M parameters. This is significantly higher
than the 74.5%, 40.3%, and 5.0% obtained by HRM us-
ing 4 times the number of parameters (27M).

Table 4. % Test accuracy on Puzzle Benchmarks (Sudoku-
Extreme and Maze-Hard)

Method | #Params | Sudoku | Maze
Chain-of-thought, pretrained
Deepseek R1 671B 0.0 0.0
Claude 3.7 8K ? 0.0 0.0
O3-mini-high ? 0.0 0.0
Direct prediction, small-sample training
Direct pred 27M 0.0 0.0
HRM 27M 55.0 74.5
TRM-Att (Ours) ™ 747 | 853
TRM-MLP (Ours) | 5M/19M! | 87.4 0.0

Table 5. % Test accuracy on ARC-AGI Benchmarks (2 tries)

Method | # Params | ARC-1 [ ARC-2
Chain-of-thought, pretrained
Deepseek R1 671B 15.8 1.3
Claude 3.7 16K ? 28.6 0.7
03-mini-high ? 34.5 3.0
Gemini 2.5 Pro 32K ? 37.0 4.9
Grok-4-thinking 1.7T 66.7 16.0
Bespoke (Grok-4) 1.7T 79.6 29.4

Direct prediction, small-sample training

Direct pred 27M 21.0 0.0
HRM 27M 40.3 5.0
TRM-Att (Ours) ™ 44.6 7.8
TRM-MLP (Ours) 19M 29.6 2.4

6. Conclusion

We propose Tiny Recursion Models (TRM), a simple
recursive reasoning approach that achieves strong gen-
eralization on hard tasks using a single tiny network
recursing on its latent reasoning feature and progres-
sively improving its final answer. Contrary to the
Hierarchical Reasoning Model (HRM), TRM requires
no fixed-point theorem, no complex biological justi-
fications, and no hierarchy. It significantly reduces
the number of parameters by halving the number of
layers and replacing the two networks with a single
tiny network. It also simplifies the halting process,
removing the need for the extra forward pass. Over-

15M on Sudoku and 19M on Maze
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all, TRM is much simpler than HRM, while achieving
better generalization.

While our approach led to better generalization on 4
benchmarks, every choice made is not guaranteed to
be optimal on every dataset. For example, we found
that replacing the self-attention with an MLP worked
extremely well on Sudoku-Extreme (improving test ac-
curacy by 10%), but poorly on other datasets. Different
problem settings may require different architectures
or number of parameters. Scaling laws are needed
to parametrize these networks optimally. Although
we simplified and improved on deep recursion, the
question of why recursion helps so much compared
to using a larger and deeper network remains to be
explained; we suspect it has to do with overfitting, but
we have no theory to back this explaination. Not all
our ideas made the cut; we briefly discuss some of the
failed ideas that we tried but did not work in Section 6.
Currently, recursive reasoning models such as HRM
and TRM are supervised learning methods rather than
generative models. This means that given an input
question, they can only provide a single deterministic
answer. In many settings, multiple answers exist for a
question. Thus, it would be interesting to extend TRM
to generative tasks.
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Hyper-parameters and setup

All models are trained with the AdamW opti-
mizer(Loshchilov & Hutter, 2017; Kingma & Ba, 2014)
with 1 = 0.9, B, = 0.95, small learning rate warm-
up (2K iterations), batch-size 768, hidden-size of 512,
Nsyp = 16 max supervision steps, and stable-max loss
(Prieto et al., 2025) for improved stability. TRM uses an
Exponential Moving Average (EMA) of 0.999. HRM
uses n = 2, T = 2 with two 4-layers networks, while
we use n = 6, T = 3 with one 2-layer network.

For Sudoku-Extreme and Maze-Hard, we train for 60k
epochs with learning rate le-4 and weight decay 1.0.
For ARC-AGI, we train for 100K epochs with learning
rate le-4 (with le-2 learning rate for the embeddings)
and weight decay 0.1. The numbers for Deepseek R1,
Claude 3.7 8K, O3-mini-high, Direct prediction, and
HRM from the Table 4 and 5 are taken from Wang et al.
(2025). Both HRM and TRM add an embedding of
shape [0,1, D] on Sudoku-Extreme and Maze-Hard to
the input. For ARC-AG]I, each puzzle (containing 2-3
training examples and 1-2 test examples) at each data-
augmentation is given a specific embedding of shape
[0,1, D] and, at test-time, the most common answer
out of the 1000 data augmentations is given as answer.

Experiments on Sudoku-Extreme were ran with 1 L40S
with 40Gb of RAM for generally less than 36 hours.
Experiments on Maze-Hard were ran with 4 L40S with
40Gb of RAM for less than 24 hours. Experiments on
ARC-AGI were ran for around 3 days with 4 H100
with 80Gb of RAM.

Ideas that failed

In this section, we quickly mention a few ideas that
did not work to prevent others from making the same
mistake.

We tried replacing the SwiGLU MLPs by SwiGLU
Mixture-of-Experts (MoEs) (Shazeer et al., 2017; Fedus
et al., 2022), but we found generalization to decrease
massively. MoEs clearly add too much unnecessary
capacity, just like increasing the number of layers does.

Instead of back-propagating through the whole n + 1
recursions, we tried a compromise between HRM 1-
step gradient approximation, which back-propagates
through the last 2 recursions. We did so by decou-
pling n from the number of last recursions k that we
back-propagate through. For example, while n = 6
requires 7 steps with gradients in TRM, we can use
gradients for only the k = 4 last steps. However, we
found that this did not help generalization in any way,
and it made the approach more complicated. Back-
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propagating through the whole n + 1 recursions makes
the most sense and works best.

We tried removing ACT with the option of stopping
when the solution is reached, but we found that gen-
eralization dropped significantly. This can probably
be attributed to the fact that the model is spending
too much time on the same data samples rather than
focusing on learning on a wide range of data samples.

We tried weight tying the input embedding and out-
put head, but this was too constraining and led to a
massive generalization drop.

We tried using TorchDEQ (Geng & Kolter, 2023) to
replace the recursion steps by fixed-point iteration as
done by Deep Equilibrium Models (Bai et al., 2019).
This would provide a better justification for the 1-step
gradient approximation. However, this slowed down
training due to the fixed-point iteration and led to
worse generalization. This highlights the fact that
converging to a fixed-point is not essential.
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Algorithms with different number of latent
features

def latent_recursion(x, z, n=6):

for i in range(n+1): # latent recursion
net(x, z)
return z

z =

def deep.recursion(x, z, n=6, T=3):
# recursing T—1 times to improve z (no gradients needed)
with torch.no_grad():
for j in range(T-1):
z = latent_recursion(x, z, n)
# recursing once to improve z
z = latent_recursion(x, z, n)
return z.detach(), output_head(y), Q-head(y)

# Deep Supervision
for x_input, y_-true in train_dataloader:
z = z_init
for step in range(N_supervision):
x = input_embedding(x_input)
z, y-hat, g-hat = deep_recursion(x, z)
loss = softmax_cross_entropy(y-hat, y-true)
loss += binary.cross_entropy(g-hat, (y-hat == y_true))
z = z.detach()
loss.backward ()
opt.step()
opt.zero_grad()
if q[0] > 0: # early—stopping
break

Figure 4. Pseudocode of TRM using a single-z with deep
supervision training in PyTorch.

def latent_recursion(x, y, z, n=6):
for i in range(n): # latent recursion
z[i] = net(x, y, z[0], ... , z[n-1])
y = net(y, z[0], ... , z[n-1]1) # refine output answer
return y, z

def deep_recursion(x, y, z, n=6, T=3):
# recursing T—1 times to improve y and z (no gradients needed)
with torch.no_grad():
for j in range(T-1):
y, z = latent_recursion(x, y, z, n)
# recursing once to improve y and z
y, z = latent_recursion(x, y, z, n)
return (y.detach(), z.detach()), output-head(y), Q-head(y)

# Deep Supervision
for x_input, y_true in train_dataloader:
¥, z = y-init, z_init
for step in range(N_supervision):
x = input_embedding(x-input)
(y, z), y-hat, g-hat = deep.recursion(x, y, z)
loss = softmax._cross_entropy(y-hat, y_true)
loss += binary.cross_entropy(qg-hat, (y-hat == y_true))
loss.backward ()
opt.step()
opt.zero_grad()
if q[0] > 0: # early—stopping
break

Figure 5. Pseudocode of TRM using multi-scale z with deep
supervision training in PyTorch.
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Example on Sudoku-Extreme

8131
9 68| |7
31 15
6|8
6 2
714 3
9 4
2 4
6 2 7
Input x
51216]7]9]4]8]3]|1
3|19]1(2]6|8]4]7|5
4181713[1]|5]2]9(6
116/8]5/3[2]7]4|9
913/5[4|7|6]1|8|2
714121918[1]1516/3
817[3]1]5]/9]6]2|4
215|916/4|7]3]1|8
6111418/5/3]9[5]7
Output y
5/216|7]9]4]8]3]|1
3|19]1(2]6|8]4|7|5
4181713[115]21916
116[8]5/3[2]|7[4]9
913|5|4|7]|6]1|8]|2
714(1219]8]1]15/6/3
817[3[1]5]/9]6]2|4
215/9(6]4|7]|3]1]8
611/418/5[3]9/5]7
Tokenized zp (denoted y in TRM)
5| |5]4]9|4] |6]3
4| [3]1 416|5
41814 (3] |6]6]4
9| |6]5]3] |5]4
315]4(3] |5]|4|4
6| 13| [3[3]5/8]8
313]3|6]/5]| |6]6]4
715| |6] [3]3|6]6
4131418] 13]61614
Tokenized z;, (denoted z in TRM)

Figure 6. This Sudoku-Extreme example shows an input, ex-
pected output, and the tokenized zy and z; (after reversing
the embedding and using argmax) for a pretrained model.
This highlights the fact that zp corresponds to the predicted
response, while z; is a latent feature that cannot be decoded
to a sensible output unless transformed into zp; by fx.



